Background: Wearable devices may generate valuable data for global health research for low- and middle-income countries (LMICs). However, wearable studies in LMICs are scarce. This study aims to investigate the use of consumer-grade wearables to generate individual-level data in vulnerable populations in LMICs, focusing on the acceptability (quality of the devices being accepted or even liked) and feasibility (the state of being workable, realizable, and practical, including aspects of data completeness and plausibility).

Methods: We utilized a mixed-methods approach within the health and demographic surveillance system (HDSS) to conduct a case study in Nouna, Burkina Faso (BF). All HDSS residents older than 6 years were eligible. = 150 participants were randomly selected from the HDSS database to wear a wristband tracker (Withings Pulse HR) and = 69 also a thermometer patch (Tucky thermometer) for 3 weeks. Every 4 days, a trained field worker conducted an acceptability questionnaire with participants, which included questions for the field workers as well. Descriptive and qualitative thematic analyses were used to analyze the responses of study participants and field workers.

Results: In total, = 148 participants were included (and n = 9 field workers). Participant's acceptability ranged from 94 to 100% throughout the questionnaire. In 95% of the cases ( = 140), participants reported no challenges with the wearable. Most participants were not affected by the wearable in their daily activities ( = 122, 83%) and even enjoyed wearing them ( = 30, 20%). Some were concerned about damage to the wearables ( = 7, 5%). Total data coverage (i.e., the proportion of the whole 3-week study duration covered by data) was 43% for accelerometer (activity), 3% for heart rate, and 4% for body shell temperature. Field workers reported technical issues like faulty synchronization ( = 6, 1%). On average, participants slept 7 h (SD 3.2 h) and walked 8,000 steps per day (SD 5573.6 steps). Acceptability and data completeness were comparable across sex, age, and study arms.

Conclusion: Wearable devices were well-accepted and were able to produce continuous measurements, highlighting the potential for wearables to generate large datasets in LMICs. Challenges constituted data missingness mainly of technical nature. To our knowledge, this is the first study to use consumer-focused wearables to generate objective datasets in rural BF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561896PMC
http://dx.doi.org/10.3389/fpubh.2022.972177DOI Listing

Publication Analysis

Top Keywords

wearable devices
12
wearables generate
12
field workers
12
devices generate
8
data
8
individual-level data
8
burkina faso
8
case study
8
data completeness
8
participants included
8

Similar Publications

Digital health technologies enabling the transition from pregnancy to early parenthood: A scoping review.

Z Evid Fortbild Qual Gesundhwes

January 2025

Department Digital Health Sciences and Biomedicine, School of Life Sciences, University of Siegen, Siegen, Germany.

Background: Pregnant women and their families, especially those navigating chronic illness or challenging life situations, often seek information and counseling. The pregnancy period and the transition to parenthood can exacerbate these circumstances, leaving families particularly vulnerable. Addressing stressful situations becomes a hurdle in this context.

View Article and Find Full Text PDF

Passive cardiac monitoring has become synonymous with wearable technologies, necessitating patients to incorporate new devices into their daily routines. While this requirement may not be a burden for many, it is a constraint for individuals with chronic diseases who already have their daily routine. In this study, we introduce an innovative technology that harnesses the front-facing camera of smartphones to capture pulsatile signals discreetly when users engage in other activities on their device.

View Article and Find Full Text PDF

Physical activity (PA) reduces the risk of negative mental and physical health outcomes in older adults. Traditionally, PA intensity is classified using METs, with 1 MET equal to 3.5 mL O·min·kg.

View Article and Find Full Text PDF

The Selective Metallization Technique shows promise for roll-to-roll in-line patterning of flexible electronics using evaporated metals, but challenges arise when applied to sputtering functional materials. This study overcomes these challenges with simultaneous sputtering of Bi-Sb-Te and evaporation of metal (Ag or Cu) for thermoelectric layers when using Selective Metallization Technique. Large-scale manufacturing is demonstrated through roll-to-roll processing of a 0.

View Article and Find Full Text PDF

Large-area radiation-modulated thermoelectric fabrics for high-performance thermal management and electricity generation.

Sci Adv

January 2025

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China.

Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!