The exponential growth of electrical demand and the integration of renewable energy sources (RES) brought new challenges in the traditional grid about energy quality. The transition from traditional grid to smart grid is the best solution which provides necessary tools and information and communication technologies (ICT) for service enhancement. In this study, variation of energy demand and some factors of atmospheric change are considered to forecast production of photovoltaic energy that can be adapted for evolution of consumption in smart grid. The contribution of this study concerns a novel optimized hybrid intelligent model made of the artificial neural network (ANN), support vector machine (SVM), and particle swarm optimization (PSO) implemented for long term photovoltaic (PV) power generation forecasting based on real data of consumption and climate factors of the city of Douala in Cameroon. The accuracy of this model is evaluated using the coefficients such as the mean square error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), and regression coefficient (R). Using this novel hybrid technique, the MSE, RMSE, MAPE, MAE, and are 14.9721, 3.8693, 3.32%, 0.867, and 0.9984, respectively. These obtained results show that the novel hybrid model outperforms other models in the literature and can be helpful for future renewable energy requirements. However, the convergence speed of the proposed approach can be affected due to the random variability of available data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560835PMC
http://dx.doi.org/10.1155/2022/7495548DOI Listing

Publication Analysis

Top Keywords

novel hybrid
12
smart grid
12
photovoltaic power
8
power generation
8
generation forecasting
8
hybrid intelligent
8
intelligent model
8
renewable energy
8
traditional grid
8
square error
8

Similar Publications

The hidden weavers: A review of DNA/RNA R-loops in stem cell biology and therapeutic potential.

Int J Biol Macromol

January 2025

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China. Electronic address:

R-loops, three-stranded nucleic acid structures composed of RNA-DNA hybrids, are increasingly recognized as central regulators of genomic stability and transcription. These structures play critical roles across various cellular processes, including DNA replication, repair, and gene regulation, with significant implications for stem cell biology and disease pathogenesis. This review comprehensively explores the molecular underpinnings of R-loop formation, emphasizing the dual nature of R-loops in both facilitating normal cellular functions and contributing to genomic instability.

View Article and Find Full Text PDF

In situ growth of ZIF-8 nanoparticles on pure chitosan nanofibrous membranes for efficient antimicrobial wound dressings.

Int J Biol Macromol

January 2025

Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:

Bacterial infections and excessive accumulation of wound exudates remain the main obstacles and clinical challenges to the healing of chronic cutaneous wounds. Conventional dressings are commonly used medical materials for acute wound care, but they do not possess the bacterial infection resistance required for chronic wound treatment. Herein, we prepared pure chitosan nanofibrous membranes (C) by electrospinning with poly(ethylene oxide) (PEO) as a sacrificial additive and then loaded with zinc-based metal-organic framework (MOF) as a novel antimicrobial wound dressing.

View Article and Find Full Text PDF

High-risk human papillomavirus E6 oncoprotein is a model system for the recognition and degradation of cellular p53 tumor suppressor protein. There remains a gap in the understanding of the ubiquitin transfer reaction, including placement of the E6AP catalytic HECT domain of the ligase concerning the p53 substrate and how E6 itself is protected from ubiquitination. We determined the cryoelectron microscopy (cryo-EM) structure of the E6AP/E6/p53 complex, related the structure to in vivo modeling of the tri-molecular complex, and identified structural interactions associated with activation of the ubiquitin ligase function.

View Article and Find Full Text PDF

Molecular advances in research and applications of male sterility systems in tomato.

Plant Physiol Biochem

January 2025

Department of Vegetable Science, Institute of Agricultural Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751029, India.

Tomato, belonging to the nightshade family, is globally considered as a model system for classical and molecular genetics, genomics, and reproductive developmental studies. In the current scenario of climate change, hybrid development is among the crucial elements in the genetic improvement of crop plants. The phenomenon of male sterility is a viable approach for ensuring hybrid seed purity and reducing the cost of hybrid seed production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!