AI Article Synopsis

Article Abstract

Background: is farmed worldwide due to its nutrient-rich properties and provides multiple benefits to human health. However, the wide usage of silver nanoparticles (Ag NPs) causes pollution which may affect the nutritional quality of . Hence, this study aimed to investigate the interaction and accumulation of Ag NPs on , and determine the changes in biomass and nutritional value of due to the exposure to Ag NPs.

Methods: The interaction and accumulation of Ag NPs on were examined through Fourier transformed infrared (FTIR) spectroscopy and scanning electron microscope (SEM). The loss in biomass together with the macromolecules, pigments, and phenolic compounds of was investigated upon treating with various concentrations of Ag NPs (5, 10, 25, 50 and 100 µg/mL) for 24, 48, 72 and 96 h.

Results: The results showed that the treatment of with Ag NPs caused a dose and time-dependent reduction in biomass, macronutrients, pigments and phenolic compounds. The highest detrimental effects were found at 96 h with the reported values of 65.71 ± 2.79%, 67.21 ± 3.98%, 48.99 ± 4.39% and 59.62 ± 3.96% reduction in biomass, proteins, carbohydrates and lipids, respectively, along with 82.99 ± 7.81%, 67.55 ± 2.63%, 75.03 ± 1.55%, and 63.43 ± 2.89% loss in chlorophyll-, carotenoids, C-phycocyanin, and total phenolic compounds of for 100 µg/mL of Ag NPs. The EDX analysis confirmed the surface accumulation of Ag NPs on cells, while SEM images evidenced the surface alterations and damage of the treated cells. The functional groups such as hydroxyl, amine, methyl, amide I, amide II, carboxyl, carbonyl and phosphate groups from the cell wall of the were identified to be possibly involved in the interaction of Ag NPs with .

Conclusion: The study confirmed that the exposure of Ag NPs is detrimental to where the interaction and accumulation of Ag NPs on caused reduction in biomass, macromolecules, pigments, and total phenolic compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563293PMC
http://dx.doi.org/10.7717/peerj.13972DOI Listing

Publication Analysis

Top Keywords

accumulation nps
16
phenolic compounds
16
interaction accumulation
12
reduction biomass
12
nps
10
silver nanoparticles
8
biomass macromolecules
8
macromolecules pigments
8
pigments phenolic
8
100 µg/ml
8

Similar Publications

Brain cancer continues to be one of the most formidable malignancies to manage, mainly attributable to the presence of the blood-brain barrier (BBB) limiting the permeability of drugs and the diverse characteristics of brain tumors complicating treatment. The management of brain tumors has been hampered by many different factors, including the impermeability of the BBB, which restricts the delivery of chemotherapeutic agents to the tumor site, as well as intertumoral heterogeneity and the influence of brain tumor stem cells. In addition, small molecular weight drugs cannot specifically accumulate in malignant cells and have a limited circulation half-life.

View Article and Find Full Text PDF

Cardiotoxicity of polystyrene nanoplastics and associated mechanism of myocardial cell injury in mice.

Ecotoxicol Environ Saf

January 2025

Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi Province 330006, China. Electronic address:

Aims: Nanoplastics (NPs) are emerging organic pollutants generated by plastic degradation and are ubiquitous in the environment. They can be accumulated through the food webs and enter the human body through dietary intake, posing health risks. The main target organs of NP accumulation are the lungs, liver, heart, and kidneys.

View Article and Find Full Text PDF

In the background of antioxidation properties of selenium (Se) in plants, the role of nano‑selenium (Se-NPs) was justified in the modulation of Capsicum fruit ripening. In our study, exogenous application of 8 mg L Se-NPs on fruits through 7 days (D) of postharvest storage regulated decay rate, water loss and fruit coat firmness. Se-NPs recovered fruit coat damages with reduction of ion leakage, lipid oxidation, and accumulation of polyamines.

View Article and Find Full Text PDF

Mechanisms Underlying the Size-Dependent Neurotoxicity of Polystyrene Nanoplastics in Zebrafish.

Environ Sci Technol

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China.

Nanoplastics (NPs) are ubiquitous in the environment, posing significant threats to biological systems, including nervous systems, across various trophic levels. Nevertheless, the molecular mechanisms behind the size-dependent neurotoxicity of NPs remain unclear. Here, we investigated the neurotoxicity of 20 and 100 nm polystyrene NPs (PS-NPs) to zebrafish.

View Article and Find Full Text PDF

Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!