Microfossils have a ubiquitous and well-studied fossil record with temporally and spatially fluctuating diversity, but how this arises and how major events affect speciation and extinction is uncertain. We present one of the first applications of PyRate to a micropalaeontological global occurrence dataset, reconstructing diversification rates within a Bayesian framework from the Mesozoic to the Neogene in four microfossil groups: planktic foraminiferans, calcareous nannofossils, radiolarians and diatoms. Calcareous and siliceous groups demonstrate opposed but inconsistent responses in diversification. Radiolarian origination increases from . 104 Ma, maintaining high rates into the Cenozoic. Calcareous microfossil diversification rates significantly declines across the Cretaceous-Palaeogene boundary, while rates in siliceous microfossil groups remain stable until the Paleocene-Eocene transition. Diversification rates in the Cenozoic are largely stable in calcareous groups, whereas the Palaeogene is a turbulent time for diatoms. Diversification fluctuations are driven by climate change and fluctuations in sea surface temperatures, leading to different responses in the groups generating calcareous or siliceous microfossils. Extinctions are apparently induced by changes in anoxia, acidification and stratification; speciation tends to be associated with upwelling, productivity and ocean circulation. These results invite further micropalaeontological quantitative analysis and study of the effects of major transitions in the fossil record. Despite extensive occurrence data, regional diversification events were not recovered; neither were some global events. These unexpected results show the need to consider multiple spatiotemporal levels of diversity and diversification analyses and imply that occurrence datasets of different clades may be more appropriate for testing some hypotheses than others.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9540813 | PMC |
http://dx.doi.org/10.1111/pala.12615 | DOI Listing |
Mol Phylogenet Evol
January 2025
Autonomous University of Barcelona, Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC by IBB - Cerdanyola del Vallès, Spain.
Widely distributed plant genera offer insights into biogeographic processes and biodiversity. The Carduus-Cirsium group, with over 600 species in eight genera, is diverse across the Holarctic regions, especially in the Mediterranean Basin, Southwest Asia, Japan, and North America. Despite this diversity, evolutionary and biogeographic processes within the group, particularly for the genus Cirsium, remain underexplored.
View Article and Find Full Text PDFAm J Bot
January 2025
School of Biological Sciences, Washington State University, Pullman, 99164, Washington, USA.
BMC Plant Biol
January 2025
Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
Background: The St-genome-sharing taxa are highly complex group of the species with the St nuclear genome and monophyletic origin in maternal lineages within the Triticeae, which contains more than half of polyploid species that distributed in a wide range of ecological habitats. While high level of genetic heterogeneity in plastome DNA due to a reticulate evolutionary event has been considered to link with the richness of the St-genome-sharing taxa, the relationship between the dynamics of diversification and molecular evolution is lack of understanding.
Results: Here, integrating 106 previously and 12 newly sequenced plastomes representing almost all previously recognized genomic types and genus of the Triticeae, this study applies phylogenetic reconstruction methods in combination with lineage diversification analyses, estimate of sequence evolution, and gene expression to investigate the dynamics of diversification in the tribe.
Biology (Basel)
December 2024
Department of Biological Sciences, University of Missouri, 207 Tucker Hall, Columbia, MO 65211, USA.
In communication systems, the signal and preference for the signal have to match, limiting phenotypic variation. Yet, communication systems evolve, but the mechanisms of how phenotypic variation can come into existence while not disrupting the match are poorly understood. Geographic variation in communication can provide insights into the diversification of these systems.
View Article and Find Full Text PDFAm J Bot
January 2025
Department of Biology, University of Idaho, Moscow, 83844, Idaho, USA.
Premise: Considering rapidly changing fire regimes due to anthropogenic disturbances to climate and fuel loads, it is crucial to understand the underpinnings driving fire-adapted trait evolution. Among the oldest lineages affected by fire is Coniferae. This lineage occupies a variety of fire prone and non-fire prone habitats across all hemispheres and has four fire-adapted traits: (1) thick bark; (2) serotiny; (3) seedling grass stage; and (4) resprouting ability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!