High electrocatalytic activity with tunable luminescence is crucial for the development of electrochemiluminescence (ECL) luminophores. In this study, a porphyrin-based heterobimetallic 2D metal organic framework (MOF), [(ZnTCPP)Co(MeIm)] (1), is successfully self-assembled from the zinc(II) tetrakis(4-carboxyphenyl)porphine (ZnTCPP) linker and cobalt(II) ions in the presence of 2-methylimidazole (MeIm) by a facile one-pot reaction in methanol at room temperature. On the basis of the experimental results and the theoretical calculations, the MOF 1 contains paddle-wheel [Co(-CO)] secondary building units (SBUs) axially coordinated by a MeIm ligand, which is very beneficial to the electron transfer between the Co(II) ions and oxygen. Combining the photosensitizers ZnTCPP and the electroactive [Co(-CO)] SBUs, the 2D MOF 1 possesses an excellent ECL performance, and can be used as a novel ECL probe for rapid nonamplified detection of the RdRp gene of SARS-CoV-2 with an extremely low limit of detection (≈30 aM).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9539398PMC
http://dx.doi.org/10.1002/adfm.202209743DOI Listing

Publication Analysis

Top Keywords

zn-porphyrin-based coii-mof
4
coii-mof 2-methylimidazole
4
2-methylimidazole sitting
4
sitting axially
4
axially paddle-wheel
4
paddle-wheel units
4
units efficient
4
efficient electrochemiluminescence
4
electrochemiluminescence bioassay
4
bioassay sars-cov-2
4

Similar Publications

Advanced High-Throughput Rational Design of Porphyrin-Sensitized Solar Cells Using Interpretable Machine Learning.

Adv Sci (Weinh)

November 2024

Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.

Accurately predicting the power conversion efficiency (PCE) in dye-sensitized solar cells (DSSCs) represents a crucial challenge, one that is pivotal for the high throughput rational design and screening of promising dye sensitizers. This study presents precise, predictive, and interpretable machine learning (ML) models specifically designed for Zn-porphyrin-sensitized solar cells. The model leverages theoretically computable, effective, and reusable molecular descriptors (MDs) to address this challenge.

View Article and Find Full Text PDF

High electrocatalytic activity with tunable luminescence is crucial for the development of electrochemiluminescence (ECL) luminophores. In this study, a porphyrin-based heterobimetallic 2D metal organic framework (MOF), [(ZnTCPP)Co(MeIm)] (1), is successfully self-assembled from the zinc(II) tetrakis(4-carboxyphenyl)porphine (ZnTCPP) linker and cobalt(II) ions in the presence of 2-methylimidazole (MeIm) by a facile one-pot reaction in methanol at room temperature. On the basis of the experimental results and the theoretical calculations, the MOF 1 contains paddle-wheel [Co(-CO)] secondary building units (SBUs) axially coordinated by a MeIm ligand, which is very beneficial to the electron transfer between the Co(II) ions and oxygen.

View Article and Find Full Text PDF

Photophysical and in vitro photoinactivation of Escherichia coli using cationic 5,10,15,20-tetra(pyridin-3-yl) porphyrin and Zn(II) derivative conjugated to graphene quantum dots.

Photodiagnosis Photodyn Ther

December 2022

Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa. Electronic address:

Pathogenic microorganisms may continue causing infection through the transfer of antibiotic resistance genes. As a result, the efficacy of pharmaceuticals in microbial inactivation is deteriorating. The present study was conducted to investigate the antimicrobial activity of neutral and quaternized free base and Zn 5,10,15,20-tetra(pyridin-3-yl) porphyrins on Escherichia coli (E.

View Article and Find Full Text PDF

Porphyrin-based non-fullerene acceptors (NFAs) have shown pronounced potential for assembling low-bandgap materials with near-infrared (NIR) characteristics. Herein, panchromatic-type porphyrin-based molecules (POR1-POR5) are proposed by modulating end-capped acceptors of a highly efficient porphyrin-based NFA PORTFIC(POR) for organic solar cells (OSCs). Quantum chemical structure-property relationship has been studied to discover photovoltaic and optoelectronic characteristics of POR1-POR5.

View Article and Find Full Text PDF

A robust and efficient aqueous electrochemiluminescence emitter constructed by sulfonate porphyrin-based metal-organic frameworks and its application in ascorbic acid detection.

Analyst

April 2020

Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.

The robust and strong electrochemiluminescence (ECL) emission of organic emitters in an aqueous solution is crucial for expanding their applications in early diagnosis. Herein, a Zn porphyrin-based metal-organic framework ((Zn)porphMOF) was facilely obtained by chelating Zn(ii)meso-tetra (4-sulfonatophenyl) porphine (Zn-TSPP) with Zn ions, showing substantially enhanced ECL radiation with KSO as the coreactant via the "reduction-oxidation" route in aqueous media. In contrast with Zn-TSPP, (Zn)porphMOF displayed 22-fold increase in the ECL intensity because of the agglomeration effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!