Adventitious root (AR) formation is the basis of vegetative propagation in rose, be it stem cuttings or stenting. During this process, wounding plays a pivotal role since cell reprogramming takes place at the tissue adjacent to the wound. We investigated the effects of wounding on AR formation on leafy single-node stem cuttings of the rose rootstock 'Pfänder' (codes R02-3 and R02-6) and the cut rose cultivar 'Tan09283' (Registration name 'Beluga'). Laser wounding treatments were based on the assisted removal of tissue layers located in the bark. The positioning of wounding was studied based on two marking directions: along the cutting base (strip pattern) and around the cutting base (ring pattern). Additionally, the effects of external supply of indole-butyric acid (IBA 1 mg L) on rooting were analyzed. Results showed that in order to remove specific tissue layers, the calculation of the laser energy density (J cm) in terms of cutting diameter was necessary. Interestingly, the application of energy densities from 2.5 J cm up to approximately 8.5 J cm were sufficient to expose the tissue layers of epidermis up to regions of phloem. Regarding AR formation for 'Pfänder', characterized by a low rooting response, an increase in the rooting percentage was registered when the laser treatment eliminated the tissue up to phloem proximities. Analysis of the nodal position showed that bud location was a preferential place for AR formation independently of wounding treatment. In case of 'Tan09283', laser treatments did not reduce its high rooting capacity, but an apparent reduction in rooting quality due to an investment in tissue healing was observed when wounding reached deeper layers such as parenchyma and sclerenchyma. Results also showed a strong AR formation directly from wounded regions in case of 'Tan09283' specifically when the wound was located below the axillary bud. In conclusion, wounding by assisted-elimination of layers by laser can induce positive effects on AR formation of single-node stem cuttings of the rose if energy applied is able to expose phloem proximities, a longitudinal orientation, and relative position to the axillary bud are considered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9557736 | PMC |
http://dx.doi.org/10.3389/fpls.2022.1009085 | DOI Listing |
Prog Mol Biol Transl Sci
January 2025
School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India. Electronic address:
A new era in genomic medicine has been brought by the development of CRISPR-Cas technology, which presents hitherto unheard-of possibilities for the treatment of metabolic illnesses. The treatment approaches used in CRISPR/Cas9-mediated gene therapy, emphasize distribution techniques such as viral vectors and their use in preclinical models of metabolic diseases like hypercholesterolemia, glycogen storage diseases, and phenylketonuria. The relevance of high-throughput CRISPR screens for target identification in discovering new genes and pathways associated with metabolic dysfunctions is an important aspect of the discovery of new approaches.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Science and Engineering, Waseda University, Tokyo, Japan.
Gold (or electrum) in hydrothermal fluid precipitates directly from gold sulfide complex and/or partly via suspended nanoparticles. The hydrothermal fluid contains "invisible gold" that is atomically dispersed in sulfide minerals or as nanoparticles with a size of less than 10 nm. However, the contribution of these gold nanoparticles to the formation of native gold and its alloy with silver (electrum) remains unclear.
View Article and Find Full Text PDFBone Res
January 2025
National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China.
Tissue clearing combined with high-resolution confocal imaging is a cutting-edge approach for dissecting the three-dimensional (3D) architecture of tissues and deciphering cellular spatial interactions under physiological and pathological conditions. Deciphering the spatial interaction of leptin receptor-expressing (LepR) stromal cells with other compartments in the bone marrow is crucial for a deeper understanding of the stem cell niche and the skeletal tissue. In this study, we introduce an optimized protocol for the 3D analysis of skeletal tissues, enabling the visualization of hematopoietic and stromal cells, especially LepR stromal cells, within optically cleared bone hemisections.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Clinic of Endocrinology, Diabetes and Diseases of National Center for Infertility and Endocrinology of Gender, 11000 Belgrade, Serbia.
Dual-double stem cell therapy, which integrates mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), represents a cutting-edge approach in regenerative medicine, particularly for conditions such as ovarian decline, premature ovarian insufficiency (POI), and induced ovarian failure. This therapy leverages the unique properties of MSCs and HSCs, enhancing tissue repair, immune modulation, and overall regenerative outcomes. MSCs, known for their ability to differentiate into various cell types, provide a supportive microenvironment and secrete bioactive molecules that promote angiogenesis and reduce inflammation.
View Article and Find Full Text PDFPlant Dis
January 2025
Microbiology, Campus Universitário s/n, Viçosa, Minas Gerais, Brazil, 36570-000;
The Ralstonia solanacearum Species Complex (RSSC) is the most significant plant pathogen group with a wide host range. It is genetically related but displays distinct biological features, such as restrictive geography occurrence. The RSSC comprises three species: Ralstonia pseudosolanacearum (phylotype I and III), Ralstonia solanacearum (phylotype IIA and IIB), and Ralstonia syzygii (phylotype IV) (Fegan and Prior 2005).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!