The precision spray of liquid fertilizer and pesticide to plants is an important task for agricultural robots in precision agriculture. By reducing the amount of chemicals being sprayed, it brings in a more economic and eco-friendly solution compared to conventional non-discriminated spray. The prerequisite of precision spray is to detect and track each plant. Conventional detection or segmentation methods detect all plants in the image captured under the robotic platform, without knowing the ID of the plant. To spray pesticides to each plant exactly once, tracking of every plant is needed in addition to detection. In this paper, we present LettuceTrack, a novel Multiple Object Tracking (MOT) method to simultaneously detect and track lettuces. When the ID of each plant is obtained from the tracking method, the robot knows whether a plant has been sprayed before therefore it will only spray the plant that has not been sprayed. The proposed method adopts YOLO-V5 for detection of the lettuces, and a novel plant feature extraction and data association algorithms are introduced to effectively track all plants. The proposed method can recover the ID of a plant even if the plant moves out of the field of view of camera before, for which existing Multiple Object Tracking (MOT) methods usually fail and assign a new plant ID. Experiments are conducted to show the effectiveness of the proposed method, and a comparison with four state-of-the-art Multiple Object Tracking (MOT) methods is shown to prove the superior performance of the proposed method in the lettuce tracking application and its limitations. Though the proposed method is tested with lettuce, it can be potentially applied to other vegetables such as broccoli or sugar beat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562178PMC
http://dx.doi.org/10.3389/fpls.2022.1003243DOI Listing

Publication Analysis

Top Keywords

proposed method
20
precision spray
12
multiple object
12
object tracking
12
tracking mot
12
plant
11
detect track
8
plant sprayed
8
mot methods
8
tracking
7

Similar Publications

Optimizing Transformer-Based Network via Advanced Decoder Design for Medical Image Segmentation.

Biomed Phys Eng Express

January 2025

Shandong University, No. 72, Binhai Road, Jimo, Qingdao City, Shandong Province, Qingdao, 266200, CHINA.

U-Net is widely used in medical image segmentation due to its simple and flexible architecture design. To address the challenges of scale and complexity in medical tasks, several variants of U-Net have been proposed. In particular, methods based on Vision Transformer (ViT), represented by Swin UNETR, have gained widespread attention in recent years.

View Article and Find Full Text PDF

Understanding the Topology Freezing Temperature of Vitrimer-Like Materials through Complementary Structural and Rheological Analyses for Phase-Separated Network.

ACS Macro Lett

January 2025

Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi 466-8555, Japan.

Vitrimers are sustainable cross-linked polymers characterized by an associative bond exchange mechanism within their network. A well-known feature of vitrimers is the Arrhenius dependence of the viscosity or relaxation time. Another important aspect is the existence of a topology-freezing temperature (), which represents a transition between the viscoelastic solid state and the malleable viscoelastic liquid state.

View Article and Find Full Text PDF

Guidelines International Network: Principles for Use of Artificial Intelligence in the Health Guideline Enterprise.

Ann Intern Med

January 2025

Clinical Epidemiology and Research Center (CERC), Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy, and Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany (H.J.S.).

Description: Artificial intelligence (AI) has been defined by the High-Level Expert Group on AI of the European Commission as "systems that display intelligent behaviour by analysing their environment and taking actions-with some degree of autonomy-to achieve specific goals." Artificial intelligence has the potential to support guideline planning, development and adaptation, reporting, implementation, impact evaluation, certification, and appraisal of recommendations, which we will refer to as "guideline enterprise." Considering this potential, as well as the lack of guidance for the use of AI in guidelines, the Guidelines International Network (GIN) proposes a set of principles for the development and use of AI tools or processes to support the health guideline enterprise.

View Article and Find Full Text PDF

Fracture-related infection (FRI) is a serious orthopaedic complication and its diagnosis, particularly in the upper extremity, is difficult and poorly defined in current literature. An international consensus definition of FRI was published in 2018, and our scoping review aims to investigate FRI diagnostic tools reported in the primary literature and their biostatistical utility. A review of articles generated from the PubMed/NCBI search term "fracture-related infection" was undertaken using PRISMA methodology.

View Article and Find Full Text PDF

Background And Objectives: Identifying genetic causes of dementia in patients visiting memory clinics is important for patient care and family planning. Traditional clinical selection criteria for genetic testing may miss carriers of pathogenic variants in dementia-related genes. This study aimed identify how many carriers we are missing and to optimize criteria for selecting patients for genetic counseling in memory clinics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!