Highbush blueberry (, 2n = 4x = 48) is the most cultivated type of blueberry, both in New Zealand and overseas. Its perceived nutritional value is conferred by phytonutrients, particularly anthocyanins. Identifying the genetic mechanisms that control the biosynthesis of these metabolites would enable faster development of cultivars with improved fruit qualities. Here, we used recently released tools for genetic mapping in autotetraploids to build a high-density linkage map in highbush blueberry and to detect quantitative trait loci (QTLs) for fruit anthocyanin content. Genotyping was performed by target sequencing, with ∼18,000 single nucleotide polymorphism (SNP) markers being mapped into 12 phased linkage groups (LGs). Fruits were harvested when ripe for two seasons and analyzed with high-performance liquid chromatography-mass spectrometry (HPLC-MS): 25 different anthocyanin compounds were identified and quantified. Two major QTLs that were stable across years were discovered, one on LG2 and one on LG4, and the underlying candidate genes were identified. Interestingly, the presence of anthocyanins containing acylated sugars appeared to be under strong genetic control. Information gained in this study will enable the design of molecular markers for marker-assisted selection and will help build a better understanding of the genetic control of anthocyanin biosynthesis in this crop.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555082 | PMC |
http://dx.doi.org/10.3389/fpls.2022.965397 | DOI Listing |
Rice (N Y)
January 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Rice is highly sensitive to low temperatures, making cold stress a significant factor limiting its growth, especially during the bud bursting stage. To address this, an RIL population derived from a cross between cold-tolerant and cold-sensitive rice varieties was used to identify nine QTLs linked to cold tolerance under temperatures of 4 ℃, 5 °C, and 6 ℃ using a high-density genetic map. One candidate gene, LOC_Os07g44410, was identified through gene function annotation, haplotype analysis, and qRT-PCR, with two main haplotypes (Hap1 and Hap2) showing distinct phenotypic differences.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Molecular Translational Medicine, Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.
Pubertal timing is highly variable and is associated with long-term health outcomes. Phenotypes associated with pubertal timing include age at menarche, age at voice break, age at first facial hair and growth spurt, and pubertal timing seems to have a shared genetic architecture between the sexes. However, puberty phenotypes have primarily been assessed separately, failing to account for shared genetics, which limits the reliability of the purported health implications.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Industrial Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
The color of the rind is one of the most crucial agronomic characteristics of watermelon ( L.). Its genetic analysis was conducted to provide the identification of genes regulating rind color and improving the quality of watermelon appearance.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
July 2024
Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha 410013.
Objectives: Genetic factors play an important role in the pathogenesis of diabetic kidney disease (DKD). Studies have shown that gene polymorphism is associated with the pathogenesis of type 2 diabetes mellitus (T2DM), but its role in DKD remains unclear. This study aims to analyze the distribution of alleles and genotypes of gene in patients with T2DM, and investigate the association between genetic polymorphism and DKD susceptibility in T2DM patients, which may provide new ideas for the pathogenesis of DKD.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, 700106, India.
The conversion of solar energy into chemical energy or high-value chemicals has attracted considerable research interest in the context of the global energy crisis. Hydrogen peroxide (HO) is a versatile and powerful oxidizing agent widely used in chemical synthesis and medical disinfection. HO also serves as a clean energy source in fuel cells, generating electricity with zero-carbon emissions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!