Quantitative analysis of root development is becoming a preferred option in assessing the function of hidden underground roots, especially in studying resistance to abiotic stresses. It can be enhanced by acquiring non-destructive phenotypic information on roots, such as rhizotrons. However, it is challenging to develop high-throughput phenotyping equipment for acquiring and analyzing root images of root development. In this study, the RhizoPot platform, a high-throughput root phenotyping platform integrating plant culture, automatic root image acquisition, and image segmentation, was proposed for quantitative analysis of root development. Plants (1-5) were grown in each RhizoPot, and the growth time depended on the type of plant and the experimental requirements. For example, the growth time of cotton was about 110 days. The imaging control software (RhizoAuto) could automatically and non-destructively image the roots of RhizoPot-cultured plants based on the set time and resolution (50-4800 dpi) and obtain high-resolution (>1200 dpi) images in batches. The improved DeepLabv3+ tool was used for batch processing of root images. The roots were automatically segmented and extracted from the background for analysis of information on radical features using conventional root software (WinRhizo and RhizoVision Explorer). Root morphology, root growth rate, and lifespan analysis were conducted using root images and segmented images. The platform illustrated the dynamic response characteristics of root phenotypes in cotton. In conclusion, the RhizoPot platform has the characteristics of low cost, high-efficiency, and high-throughput, and thus it can effectively monitor the development of plant roots and realize the quantitative analysis of root phenotypes .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558169 | PMC |
http://dx.doi.org/10.3389/fpls.2022.1004904 | DOI Listing |
Chin J Integr Med
January 2025
Department of Oriental Neuropsychiatry, Dong-Eui University College of Korean Medicine, Busan, Republic of Korea.
Objective: Traditional medicine (TM) has played a key role in the health care system of East Asian countries, including China, Japan and South Korea. This bibliometric study analyzes the recent research status of these three TMs, including traditional Chinese medicine (TCM), traditional Korean medicine (TKM), and Kampo medicine (KM).
Methods: Research topics of studies published for recent 10 years (2014 to 2023), through a search on MEDLINE via PubMed, was analyzed.
Vet Med Sci
January 2025
Andırın Vocational School, Department of Computer Technologies, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Türkiye.
Prediction of body weight (BW) using biometric measurements is an important tool especially for animal welfare and automatic phenotyping tools that needs mathematical models. In this study, it was aimed to predict the BW using body length (BL), chest girth (CG) and width of the waist (WW) for rabbits of the maternal form of Hyla NG. The standard rabbit-raising practices were applied for the animals.
View Article and Find Full Text PDFNeuropsychopharmacol Rep
March 2025
National Center of Neurology and Psychiatry, National Institute of Mental Health, Kodaira, Tokyo, Japan.
Aim: The Internet Gaming Disorder Scale is a 9-item screening instrument developed based on the diagnostic criteria for Internet Gaming Disorder (IGD) in the DSM-5. This study aimed to examine the reliability and validity of the Internet Gaming Disorder Scale for children (IGDS-C) in Japanese clinical and nonclinical populations.
Methods: The study included clinical outpatients aged 9-29 with problematic game use and nonclinical adolescents aged 12-18 who played online games at least once a week.
ACS Chem Neurosci
January 2025
Laboratory for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, 34734 İstanbul, Türkiye.
is implicated in a range of conditions, including autism spectrum disorder, intellectual disability, seizures, autosomal recessive nonsyndromic intellectual disability, heterotaxy, and ciliary dysfunction. In order to understand the molecular mechanisms underlying these conditions, we focused on the structural and dynamic activity consequences of mutations within this gene. In this study, whole exome sequencing identified the c.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
Unlabelled: Rhizobia are soil bacteria capable of establishing symbiosis within legume root nodules, where they reduce atmospheric N into ammonia and supply it to the plant for growth. Australian soils often lack rhizobia compatible with introduced agricultural legumes, so inoculation with exotic strains has become a common practice for over 50 years. While extensive research has assessed the N-fixing capabilities of these inoculants, their genomics, taxonomy, and core and accessory gene phylogeny are poorly characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!