Determining the flow regime of non-perennial rivers is critical in hydrology. In this study, we developed a new approach using CubeSat imagery to detect streamflow presence using differences in surface reflectance for areas within and outside of a river reach. We calibrated the approach with streamflow records in the Hassayampa River of Arizona over 3 years (2019-2021), finding good agreement in the annual fractions of flowing days at stream gages (  = 0.82,  < 0.0001). Subsequently, annual fractions of flowing days were derived at 90 m intervals along the Hassayampa River, finding that 12% of reaches were classified as intermittent, with the remaining as ephemeral. Using a Hovmöller diagram, streamflow presence was visualized in unprecedented spatiotemporal detail, allowing estimates of daily fraction of flowing channel and annual fractions of flowing days. This new tool opens avenues for detecting streamflow and studying hydrological and biogeochemical processes dependent on water presence in drylands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9540060PMC
http://dx.doi.org/10.1029/2022GL098729DOI Listing

Publication Analysis

Top Keywords

detecting streamflow
4
streamflow dryland
4
dryland rivers
4
rivers cubesats
4
cubesats determining
4
determining flow
4
flow regime
4
regime non-perennial
4
non-perennial rivers
4
rivers critical
4

Similar Publications

Seasonal snow in the extratropical Andes is a primary water source for major rivers supplying water for drinking, agriculture, and hydroelectric power in Central Chile. Here, we used estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) to analyze changes in snow cover extent over the period 2001-2022 in a total of 18 watersheds spanning approximately 1,100 km across the Chilean Andes (27-36°S). We found that the annual snow cover extent is receding in the watersheds analyzed at an average pace of approximately 19% per decade.

View Article and Find Full Text PDF

Riverine sampling of pollutants is commonly used to understand pollutants' transport pathways, relationships with hydrology, and overall presence in a waterbody. However, temporal gaps between sample collection introduce errors to these efforts, and guidance prescribing sampling frequency remains sparse. The magnitude of error often depends on a contaminant's transport mechanisms and local hydrologic conditions, making the creation of comprehensive sampling guidance difficult.

View Article and Find Full Text PDF

The National Water Model (NWM) provides critical analyses and projections of streamflow that support water management decisions. However, the NWM performs poorly in lower-elevation rivers of the western United States (US). The accuracy of the NWM depends on the fidelity of the model inputs and the representation and calibration of model processes and water sources.

View Article and Find Full Text PDF

Perfluoroalkyl substances (PFASs) are a large class of persistent emerging pollutants, ubiquitous in different environmental compartments. In this study, twenty-one PFASs were determined in seventy-eight water samples collected from six different rivers in the Umbria region (central Italy) during a 13-month monitoring campaign. The sum of the twenty-one target analytes (ΣPFASs) ranged from 2.

View Article and Find Full Text PDF

Streamflow trends and flood frequency analysis: a regional study of the UK.

Environ Sci Pollut Res Int

September 2024

Department of Civil and Mechanical Engineering (DICEM), University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043, Cassino, Frosinone, Italy.

In recent years, the escalating effects of climate change on surface water bodies have underscored the critical importance of analyzing streamflow trends for effective water resource planning and management. This study conducts a comprehensive regional investigation into the streamflow rate trends of 18 rivers across the United Kingdom (UK). An enhanced Mann-Kendall (MK) test was employed to meticulously analyze both rainfall and streamflow trends on monthly and annual scales.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!