Since the advent of the Space Age, the importance of understanding and forecasting relativistic electron fluxes in the Earth's radiation belts has been steadily growing due to the threat that such particles pose to satellite electronics. Here, we provide a model of long-duration periods of high time-integrated 2-MeV electron flux deep inside the outer radiation belt, based on the significant correlation obtained in 2001-2017 between time-integrated electron flux measured by satellites and a measure of the preceding time-integrated homogenized geomagnetic index. We show that this correlation is likely due to a stronger cumulative chorus wave-driven acceleration of relativistic electrons and a stronger cumulative inward radial diffusion of such electrons during periods of higher time-integrated geomagnetic activity. Return levels of 2-MeV electron flux are provided based on Extreme Value analysis of time-integrated geomagnetic activity over 1868-2017, in rough agreement with estimates based on 20-year data sets of measured flux. A high correlation is also found between our measure of time-integrated geomagnetic activity averaged over each solar cycle and averaged sunspot numbers, potentially paving the way for forecasts of time-integrated relativistic electron flux during future solar cycles based on predictions of solar activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541471 | PMC |
http://dx.doi.org/10.1029/2022JA030661 | DOI Listing |
Cancer Cell Int
January 2025
Department of Blood Transfusion, China-Japan, Union Hospital of Jilin University, Changchun, 130033, P.R. China.
Deapioplatycodin D (DPD) is a triterpenoid saponin natural compound isolated from the Chinese herb Platycodon grandiflorum that has antiviral and antitumor properties. This study aimed to investigate the effects of DPD on glioblastoma (GBM) cells and to determine its intrinsic mechanism of action. Using a CCK8 assay, it was found that DPD significantly inhibited the growth of GBM cells.
View Article and Find Full Text PDFJ Genet Genomics
January 2025
Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau. Therefore, it is essential to accelerate advancements in photosynthesis, the fundamental process by which plants convert light energy into chemical energy, to further enhance crop yields. Research focused on improving photosynthesis holds significant promise for increasing sustainable agricultural productivity and addressing challenges related to global food security.
View Article and Find Full Text PDFWater Res
January 2025
China Electronics System Engineering No.2 Construction Co., Ltd., Wuxi 214115, PR China.
Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China.
Polypropylene (PP) membranes have found diverse applications, such as in wastewater treatment, lithium-ion batteries, and pharmaceuticals, due to their low cost, excellent mechanical properties, thermal stability, and chemical resistance. However, the intrinsic hydrophobicity of PP materials leads to membrane fouling and filtration flux reduction, which greatly hinders the applications of PP membranes. Dielectric barrier discharge (DBD) is an effective technique for surface modification of materials because it generates a large area of low-temperature plasma at atmospheric pressure.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
Elevated synovial expression of the triggering receptor expressed on myeloid cells 1 (TREM1) has been identified as a significant biomarker for assessing disease activity in rheumatoid arthritis (RA). The upregulated expression of TREM1, induced by inflammatory mediators in infiltrating macrophages, plays a critical role in synovitis and joint destruction in RA. Our previous sequencing data linked TREM1 activation to aberrant mitophagy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!