A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

LW-CovidNet: Automatic covid-19 lung infection detection from chest X-ray images. | LitMetric

Coronavirus Disease 2019 (Covid-19) overtook the worldwide in early 2020, placing the world's health in threat. Automated lung infection detection using Chest X-ray images has a ton of potential for enhancing the traditional covid-19 treatment strategy. However, there are several challenges to detect infected regions from Chest X-ray images, including significant variance in infected features similar spatial characteristics, multi-scale variations in texture shapes and sizes of infected regions. Moreover, high parameters with transfer learning are also a constraints to deploy deep convolutional neural network(CNN) models in real time environment. A novel covid-19 lightweight CNN(LW-CovidNet) method is proposed to automatically detect covid-19 infected regions from Chest X-ray images to address these challenges. In our proposed hybrid method of integrating Standard and Depth-wise Separable convolutions are used to aggregate the high level features and also compensate the information loss by increasing the Receptive Field of the model. The detection boundaries of disease regions representations are then enhanced via an Edge-Attention method by applying heatmaps for accurate detection of disease regions. Extensive experiments indicate that the proposed LW-CovidNet surpasses most cutting-edge detection methods and also contributes to the advancement of state-of-the-art performance. It is envisaged that with reliable accuracy, this method can be introduced for clinical practices in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9538131PMC
http://dx.doi.org/10.1049/ipr2.12637DOI Listing

Publication Analysis

Top Keywords

chest x-ray
16
x-ray images
16
infected regions
12
lung infection
8
infection detection
8
detection chest
8
regions chest
8
disease regions
8
covid-19
5
detection
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!