Learning boosts the decoding of sound sequences in rat auditory cortex.

Curr Res Neurobiol

Department of Neuroscience, City University of Hong Kong, Hong Kong Special Administrative Region.

Published: July 2021

Continuous acoustic streams, such as speech signals, can be chunked into segments containing reoccurring patterns (e.g., words). Noninvasive recordings of neural activity in humans suggest that chunking is underpinned by low-frequency cortical entrainment to the segment presentation rate, and modulated by prior segment experience (e.g., words belonging to a familiar language). Interestingly, previous studies suggest that also primates and rodents may be able to chunk acoustic streams. Here, we test whether neural activity in the rat auditory cortex is modulated by previous segment experience. We recorded subdural responses using electrocorticography (ECoG) from the auditory cortex of 11 anesthetized rats. Prior to recording, four rats were trained to detect familiar triplets of acoustic stimuli (artificial syllables), three were passively exposed to the triplets, while another four rats had no training experience. While low-frequency neural activity peaks were observed at the syllable level, no triplet-rate peaks were observed. Notably, in trained rats (but not in passively exposed and naïve rats), familiar triplets could be decoded more accurately than unfamiliar triplets based on neural activity in the auditory cortex. These results suggest that rats process acoustic sequences, and that their cortical activity is modulated by the training experience even under subsequent anesthesia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9559080PMC
http://dx.doi.org/10.1016/j.crneur.2021.100019DOI Listing

Publication Analysis

Top Keywords

auditory cortex
16
neural activity
16
rat auditory
8
acoustic streams
8
segment experience
8
familiar triplets
8
passively exposed
8
training experience
8
peaks observed
8
rats
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!