Understanding how individual pollution sources contribute to ambient sulfate pollution is critical for assessing past and future air quality regulations. Since attribution to specific sources is typically not encoded in spatial air pollution data, we develop a mechanistic model which we use to estimate, with uncertainty, the contribution of ambient sulfate concentrations attributable specifically to sulfur dioxide (SO) emissions from individual coal-fired power plants in the central United States. We propose a multivariate Ornstein-Uhlenbeck (OU) process approximation to the dynamics of the underlying space-time chemical transport process, and its distributional properties are leveraged to specify novel probability models for spatial data that are viewed as either a snapshot or time-averaged observation of the OU process. Using US EPA SO emissions data from 193 power plants and state-of-the-art estimates of ground-level annual mean sulfate concentrations, we estimate that in 2011 - a time of active power plant regulatory action - existing flue-gas desulfurization (FGD) technologies at 66 power plants reduced population-weighted exposure to ambient sulfate by 1.97 μg/m (95% CI: 1.80 - 2.15). Furthermore, we anticipate future regulatory benefits by estimating that installing FGD technologies at the five largest SO-emitting facilities would reduce human exposure to ambient sulfate by an additional 0.45 μg/m (95% CI: 0.33 - 0.54).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563091PMC
http://dx.doi.org/10.1080/01621459.2022.2027774DOI Listing

Publication Analysis

Top Keywords

ambient sulfate
16
sulfate concentrations
12
power plants
12
mechanistic model
8
annual sulfate
8
united states
8
fgd technologies
8
exposure ambient
8
μg/m 95%
8
sulfate
6

Similar Publications

Impact of air pollution on the progress-free survival of non-small cell lung cancer patients with anti-PD-1/PD-L1 immunotherapy: a cohort study.

Environ Pollut

January 2025

Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China; Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China. Electronic address:

Air pollution is a well-established risk factor for lung cancer, but limited evidence exists on its impact on the treatment of lung cancer. The objective of this study was to investigate the impact of key pollutants on the efficacy of PD-1/PD-L1 inhibitor immunotherapy in non-small cell lung cancer (NSCLC) patients, thereby providing clinicians with evidence to potentially enhance the efficacy of PD-1 therapy and inform policy decisions for cancer care. To this end, we conducted a study involving 361 NSCLC patients who received PD-1/PD-L1 inhibitor immunotherapy, examining the correlation between air pollution exposure and progression-free survival (PFS) following immunotherapy treatment.

View Article and Find Full Text PDF

As a sustainable alternative technology to the cost- and energy-intensive Haber-Bosch method, electrochemical nitrogen (N) reduction offers direct conversion of N to NH under ambient conditions. Direct use of noble metals or non-noble metals as electrocatalytic materials results in unsatisfactory electrocatalytic properties because of their low electrical conductivity and stability. Herein, three-dimensional flexible carbon nanofiber (CNF/TiO@CoS) nanostructures were prepared on the surface of CNF by using electrospinning, a hydrothermal method, and in situ growth.

View Article and Find Full Text PDF

Source-dependent absorption Ångström exponent in the Los Angeles Basin: Multi-time resolution factor analyses of ambient PM and aerosol optical absorption.

Sci Total Environ

January 2025

Department of Public Health Sciences, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA.

Advanced receptor models can leverage the information derived from optical and chemical variables as input by a variety of instruments at different time resolutions to extract the source specific absorption Ångström exponent (AAE) from aerosol absorption. The multilinear engine (ME-2), a Positive Matrix Factorization (PMF) solver, serves as a proficient tool for performing such analyses, thereby overcoming the constraints imposed by the assumptions in current optical source apportionment methods such as the Aethalometer approach since the use of a-priori AAE values introduces additional uncertainty into the results of optical methods. Comprehensive PM chemical speciation datasets, and aerosol absorption coefficients (b, λ) at seven wavelengths measured by an Aethalometer (AE33), were used in multi-time source apportionment (MT-PMF).

View Article and Find Full Text PDF

A Comprehensive Review on Iron-Based Sulfate Cathodes for Sodium-Ion Batteries.

Nanomaterials (Basel)

November 2024

School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.

Sodium-ion batteries (SIBs) are advantageous for large-scale energy storage due to the plentiful and ubiquitous nature of sodium resources, coupled with their lower cost relative to alternative technologies. To expedite the market adoption of SIBs, enhancing the energy density of SIBs is essential. Raising the operational voltage of the SIBs cathode is regarded as an effective strategy for achieving this goal, but it requires stable high-voltage cathode materials.

View Article and Find Full Text PDF

Chemical Composition of Secondary Organic Aerosol Formed from the Oxidation of Semivolatile Isoprene Epoxydiol Isomerization Products.

Environ Sci Technol

December 2024

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.

3-Methylenebutane-1,2,4-triol and 3-methyltetrahydrofuran-2,4-diols, previously designated "C-alkene triols", were recently confirmed as in-particle isomerization products of isoprene-derived β-IEPOX isomers that are formed upon acid-driven uptake and partition back into the gas phase. In chamber experiments, we have systematically explored their gas phase oxidation by hydroxyl radical (OH) as a potential source of secondary organic aerosol (SOA). OH-initiated oxidation of both compounds in the presence of ammonium bisulfate aerosol resulted in substantial aerosol volume growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!