RNA-Seq transcriptomic analysis reveals gene expression profiles of acetic acid bacteria under high-acidity submerged industrial fermentation process.

Front Microbiol

Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China.

Published: September 2022

Acetic acid bacteria (AAB) are Gram-negative obligate aerobics in Acetobacteraceae family. Producing acetic acid and brewing vinegars are one of the most important industrial applications of AAB, attributed to their outstanding ability to tolerate the corresponding stresses. Several unique acid resistance (AR) mechanisms in AAB have been revealed previously. However, their overall AR strategies are still less-comprehensively clarified. Consequently, omics analysis was widely performed for a better understanding of this field. Among them, transcriptome has recently obtained more and more attention. However, most currently reported transcriptomic studies were conducted under lab conditions and even in low-acidity environment, which may be unable to completely reflect the conditions that AAB confront under industrialized vinegar-brewing processes. In this study, we performed an RNA-Seq transcriptomic analysis concerning AAB's AR mechanisms during a continuous and periodical industrial submerged vinegar fermentation process, where a single AAB strain performed the fermentation and the acetic acid concentration fluctuated between ~8% and ~12%, the highest acidity as far we know for transcriptomic studies. Samples were directly taken from the initial (CK), mid, and final stages of the same period of the on-going fermentation. 16S rRNA sequence analysis indicated the participation of in the fermentation. Transcriptomic results demonstrated that more genes were downregulated than upregulated at both mid and final stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich analysis reflected that the upregulated genes mainly carried out tricarboxylic acid cycle and oxidative phosphorylation processes, probably implying a considerable role of acetic acid overoxidation in AR during fermentation. Besides, upregulation of riboflavin biosynthesis pathway and two NAD-dependent succinate-semialdehyde dehydrogenase-coding genes suggested a critical role of succinate oxidation in AR. Meanwhile, downregulated genes were mainly ribosomal protein-coding ones, reflecting that the adverse impact on ribosomes initiates at the transcription level. However, it is ambiguous whether the downregulation is good for stress responding or it actually reflects the stress. Furthermore, we also assumed that the fermentation stages may have a greater effect on gene expression than acidity. Additionally, it is possible that some physiological alterations would affect the AR to a larger extent than changes in gene expression, which suggests the combination of molecular biology and physiology research will provide deeper insight into the AR mechanisms in AAB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9557201PMC
http://dx.doi.org/10.3389/fmicb.2022.956729DOI Listing

Publication Analysis

Top Keywords

acetic acid
20
gene expression
12
rna-seq transcriptomic
8
transcriptomic analysis
8
acid bacteria
8
fermentation process
8
mechanisms aab
8
transcriptomic studies
8
mid final
8
final stages
8

Similar Publications

Rapid Determination of Organic and Inorganic Selenium in Poultry Tissues by Internal Extractive Electrospray Ionization Mass Spectrometry.

Anal Chem

January 2025

The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China.

An online reactive internal extraction electrospray ionization (iEESI) method was developed for the rapid determination of organic and inorganic speciation information for selenium in poultry tissue samples without complex sample pretreatment. The addition of citric acid as a reducing agent to the internal extraction solvent of methanol/acetic acid (99:1, V/V) for iEESI resulted in the reduction of selenate in the sample to selenite, accompanied by the production of malic acid as an oxidation product. The quantitative analysis of selenate was conducted by using malic acid.

View Article and Find Full Text PDF

Background/objectives: Ergothioneine (EGT) is an effective antioxidant that animals cannot produce and has an important anti-inflammatory role in cell protection, which can help lower the risk of various diseases. In this study, we investigated the potential role of gut microbiota in the production of EGT, which was found to increase in the mouse liver after dietary supplementation with betaine (BET) or polydextrose (PDX).

Methods: The effects of BET and PDX on the gut microbiota and tissue EGT content were investigated using a diet-induced obese mouse model and simulated fermentation in the human colon.

View Article and Find Full Text PDF

Perception of Sour Taste in Subjects with Olfactory Deficits: Role of Myrtle Aromatization.

Nutrients

December 2024

Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, SP 8 Monserrato, 09042 Cagliari, Italy.

Background: Sour taste is associated with acid-base homeostasis, which is critical to cell metabolism and health conditions. Vinegar, which contains acetic acid as the main component, is a sour food considered the second most common condiment in Italy.

Objectives: The aim of the study was to assess differences in sourness perception in subjects with olfactory deficits compared to controls and evaluate myrtle aromatization's potential effect in modulating sourness perception in subjects with hyposmia.

View Article and Find Full Text PDF

Background/objectives: Crohn's disease is known for being associated with an abnormal composition of the bacterial flora, dysbiosis and intestinal function disorders. Metabolites produced by gut microbiota play a pivotal role in the pathogenesis of CD, and the presence of unspecific extraintestinal manifestations.

Methods: The aim of this study was a determination of the level of bacterial metabolites in blood plasma in patients with Crohn's disease.

View Article and Find Full Text PDF

and belong to acetic acid bacteria (AAB), associated with wine spoilage. The timely detection of AAB, thought essential for their control, is however challenging due to the difficulties of their isolation. Thus, it would be advantageous to detect them using molecular methods at all stages of winemaking and storage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!