Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To develop a novel evaluation system for retinal vessel alterations caused by hypertension using a deep learning algorithm.
Design: Retrospective study.
Participants: Fundus photographs (n = 10 571) of health-check participants (n = 5598).
Methods: The participants were analyzed using a fully automatic architecture assisted by a deep learning system, and the total area of retinal arterioles and venules was assessed separately. The retinal vessels were extracted automatically from each photograph and categorized as arterioles or venules. Subsequently, the total arteriolar area (AA) and total venular area (VA) were measured. The correlations among AA, VA, age, systolic blood pressure (SBP), and diastolic blood pressure were analyzed. Six ophthalmologists manually evaluated the arteriovenous ratio (AVR) in fundus images (n = 102), and the correlation between the SBP and AVR was evaluated manually.
Main Outcome Measures: Total arteriolar area and VA.
Results: The deep learning algorithm demonstrated favorable properties of vessel segmentation and arteriovenous classification, comparable with pre-existing techniques. Using the algorithm, a significant positive correlation was found between AA and VA. Both AA and VA demonstrated negative correlations with age and blood pressure. Furthermore, the SBP showed a higher negative correlation with AA measured by the algorithm than with AVR.
Conclusions: The current data demonstrated that the retinal vascular area measured with the deep learning system could be a novel index of hypertension-related vascular changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560649 | PMC |
http://dx.doi.org/10.1016/j.xops.2021.100004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!