How lightning initiates inside thunderclouds remains a major puzzle of atmospheric electricity. By monitoring optical emissions from thunderstorms, the Atmosphere-Space Interactions Monitor (ASIM) onboard the International Space Station is providing new clues about lightning initiation by detecting Blue LUminous Events (BLUEs), which are manifestations of electrical corona discharges that sometimes precedes lightning. Here we combine optical and radio observations from a thunderstorm near Malaysia to uncover a new type of event containing multiple optical and radio pulses. We find that the first optical pulse coincides with a strong radio signal in the form of a Narrow Bipolar Event (NBE) but subsequent optical pulses, delayed some milliseconds, have weaker radio signals, possibly because they emanate from a horizontally oriented electrical discharges which does not trigger full-fledged lightning. Our results cast light on the differences between isolated and lightning-initiating electrical discharges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9539966PMC
http://dx.doi.org/10.1029/2022GL098938DOI Listing

Publication Analysis

Top Keywords

optical radio
12
corona discharges
8
electrical discharges
8
optical
6
radio
5
multi-pulse corona
4
discharges
4
discharges thunderclouds
4
thunderclouds observed
4
observed optical
4

Similar Publications

A Proximity and Tactile Sensor with Visual Multiresponse.

ACS Appl Mater Interfaces

January 2025

College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

Proximity and tactile multiresponse sensing electronic skin enriches the perception dimension, which is of great significance in promoting the intelligence of electronic skin. However, achieving real-time visualization in sensors such as proximity and tactile feedback remains a challenge. A proximity and tactile sensor with visual function is designed, which can realize optical early warning and electrical recognition when the object is near, and optical display and electrical output when the object is in contact.

View Article and Find Full Text PDF

Nonlinear activation functions (NAFs) are essential in artificial neural networks, enhancing learning capabilities by capturing complex input-output relationships. However, most NAF implementations rely on additional optoelectronic devices or digital computers, reducing the benefits of optical computing. To address this, we propose what we believe to be the first implementation of a nonlinear modulation process using an electro-optic IQ modulator on a silicon photonic convolution operator chip as a novel NAF.

View Article and Find Full Text PDF

In this paper, we propose an integrated method for windowing and matched filtering in the analog domain based on microwave photonic technology, which utilizes dispersion regulation of optical waveguide to achieve the windowing processing of broadband signals in the optical domain and the surface acoustic wave filter (SAWF) to achieve the following matched filtering processing in the radio frequency (RF) domain, thus realizing their integration processing in the analog domain. The proposed method is validated by simulation and experiment, in which the integrated processing of matched filtering and windowing in the analog domain for a linear frequency modulation (LFM) signal with a bandwidth of 1 GHz is carried out and the peak to sidelobe ratio (PSLR) of the output signal is -19.55 dB and the mainlobe width (MLW) broadens to 0.

View Article and Find Full Text PDF

In biomedical research, telemetry is used to take automated physiological measurements wirelessly from animals, as it reduces their stress and allows recordings for large data collection over long periods. The ability to transmit high-throughput data from an in-body device (e.g.

View Article and Find Full Text PDF

Automatic Optical Path Alignment Method for Optical Biological Microscope.

Sensors (Basel)

December 2024

Guangxi Key Laboratory of Machine Vision and Intelligent Control, Wuzhou University, Wuzhou 543000, China.

A high-quality optical path alignment is essential for achieving superior image quality in optical biological microscope (OBM) systems. The traditional automatic alignment methods for OBMs rely heavily on complex masker-detection techniques. This paper introduces an innovative, image-sensor-based optical path alignment approach designed for low-power objective (specifically 4×) automatic OBMs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!