Coronavirus disease 2019 (COVID-19) is an infectious disease with a wide range of respiratory and extrapulmonary symptoms, as well as gastrointestinal symptoms. Despite recent research linking gut microbiota to infectious diseases like influenza, minimal information is known about the gut microbiota's function in COVID-19 pathogenesis. Studies suggest that dysbiosis of the gut microbiota and gut barrier dysfunction may play a role in COVID-19 pathogenesis by disrupting host immune homeostasis. Regardless of whether patients had taken medication or disease severity, the gut microbiota composition was significantly altered in COVID-19 patients compared to non-COVID-19 individuals. Several gut commensals with recognized immunomodulatory potential, such as , , and bifidobacteria, were underrepresented in patients and remained low in samples taken several weeks after disease resolution. Furthermore, even with disease resolution, dysbiosis in the gut microbiota may contribute to chronic symptoms, underscoring the need to learn more about how gut microbes play a role in inflammation and COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9535107PMC
http://dx.doi.org/10.4068/cmj.2022.58.3.96DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
gut
9
covid-19 pathogenesis
8
dysbiosis gut
8
play role
8
disease resolution
8
covid-19
6
disease
5
covid-19 human
4
human gut
4

Similar Publications

Type 2 diabetes mellitus (T2DM) represents a chronic metabolic disorder characterized by disrupted carbohydrate and lipid balance, resulting in hyperglycemia. This study evaluated the impact of polysaccharides derived from Cynanchum auriculatum Royle ex Wight (CRP) on mitigating hyperglycemia and modulating intestinal microbiota in T2DM mice. Findings indicated that CRP is mainly linked by →6)α-D-Glcp-(1→ and CRP-H demonstrated greater efficacy than CRP-L in regulating hypoglycemic-related indicators such as serum high-density lipoprotein cholesterol (HDL-c) level.

View Article and Find Full Text PDF

Therapeutic effects of fumaric acid on proteomic expression and gut microbiota composition in Pacific white shrimp (Penaeus vannamei) infected with Ecytonucleospora hepatopenaei (EHP).

Fish Shellfish Immunol

January 2025

Vet Products Research & Innovation Center Co., Ltd. 141 Moo9, Thailand Science Park, Innovation Clusters (INC2) Tower D 11(th) floor, Room No. INCD1108-INCD1111 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.

Recently, microsporidiosis caused by a microsporidian [Ecytonucleospora (Enterocytozoon) hepatopenaei, EHP] has been found to seriously impact the global shrimp industry. The aim of this study was to evaluate the therapeutic effects of fumaric acid (FA) in EHP-infected Pacific white shrimp (Penaeus vannamei). In the first 2 groups, non-EHP-infected shrimp were fed FA-supplemented (10 g/kg diet) or normal feed (CM+ and CM-, respectively).

View Article and Find Full Text PDF

Can microbiota gut-brain axis reverse neurodegenerative disorders in human?

Ageing Res Rev

January 2025

Medical Science and Technology Innovation Center, Shandong Key Laboratory of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117, P R China; School of Medicine and Allied Health Sciences, University of The Gambia; Department of Medical Microbiology, Central South University Changsha, Hunan Provinces, China. Electronic address:

The trillions of microbial populations residing in the gut have recently shown that they can be used as a remedy for various diseases. The gut microbiota-brain-axis interface is one unique pathway that the microbiota demonstrates its medicinal value. This medicinal value is further seen when there is a decline in gut microbial diversity (dysbiosis).

View Article and Find Full Text PDF

The gut-lung axis: Protozoa join the party.

Cell

January 2025

Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia. Electronic address:

The gut microbiota is a powerful influencer of systemic immunity, with its impact on distal organs like the lungs garnering increasing attention. In this issue of Cell, Burrows et al. report that a gut protozoan plays a key role in shaping the immunological steady state of the lung.

View Article and Find Full Text PDF

Effects of tannic acid on growth performance, intestinal health, and tolerance in broiler chickens.

Poult Sci

December 2024

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:

This study investigated the optimal tannic acid dosage and assessed tolerance levels in broiler chickens. In experiment 1, 525 broilers were randomly divided into 5 treatment groups, the control group (CON group) and groups TA1 to TA4, corresponding to treatments of 0.025, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!