A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Machine Learning Model for Predicting Mortality within 90 Days of Dialysis Initiation. | LitMetric

Background: The first 90 days after dialysis initiation are associated with high morbidity and mortality in end-stage kidney disease (ESKD) patients. A machine learning-based tool for predicting mortality could inform patient-clinician shared decision making on whether to initiate dialysis or pursue medical management. We used the eXtreme Gradient Boosting (XGBoost) algorithm to predict mortality in the first 90 days after dialysis initiation in a nationally representative population from the United States Renal Data System.

Methods: A cohort of adults initiating dialysis between 2008-2017 were studied for outcome of death within 90 days of dialysis initiation. The study dataset included 188 candidate predictors prognostic of early mortality that were known on or before the first day of dialysis and was partitioned into training (70%) and testing (30%) subsets. XGBoost modeling used a complete-case set and a dataset obtained from multiple imputation. Model performance was evaluated by c-statistics overall and stratified by subgroups of age, sex, race, and dialysis modality.

Results: The analysis included 1,150,195 patients with ESKD, of whom 86,083 (8%) died in the first 90 days after dialysis initiation. The XGBoost models discriminated mortality risk in the nonimputed (=0.826, 95% CI, 0.823 to 0.828) and imputed (=0.827, 95% CI, 0.823 to 0.827) models and performed well across nearly every subgroup (race, age, sex, and dialysis modality) evaluated (>0.75). Across predicted risk thresholds of 10%-50%, higher risk thresholds showed declining sensitivity (0.69-0.04) with improving specificity (0.79-0.99); similarly, positive likelihood ratio was highest at the 40% threshold, whereas the negative likelihood ratio was lowest at the 10% threshold. After calibration using isotonic regression, the model accurately estimated the probability of mortality across all ranges of predicted risk.

Conclusions: The XGBoost-based model developed in this study discriminated risk of early mortality after dialysis initiation with excellent calibration and performed well across key subgroups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9528387PMC
http://dx.doi.org/10.34067/KID.0007012021DOI Listing

Publication Analysis

Top Keywords

dialysis initiation
24
days dialysis
20
dialysis
11
mortality
8
predicting mortality
8
mortality days
8
early mortality
8
age sex
8
95% 0823
8
performed well
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!