Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Purpose: Prostaglandin E is considered a major mediator of inflammatory pain, by acting on neuronal G protein-coupled EP2 and EP4 receptors. However, the neuronal EP3 receptor, colocalized with EP2 and EP4 receptor, is G protein-coupled and antagonizes the pronociceptive prostaglandin E effect. Here, we investigated the cellular signalling mechanisms by which the EP3 receptor reduces EP2 and EP4 receptor-evoked pronociceptive effects in sensory neurons.
Experimental Approach: Experiments were performed on isolated and cultured dorsal root ganglion (DRG) neurons from wild type, phosphoinositide 3-kinase γ (PI3Kγ) , and PI3Kγ mice. For subtype-specific stimulations, we used specific EP2, EP3, and EP4 receptor agonists from ONO Pharmaceuticals. As a functional readout, we recorded TTX-resistant sodium currents in patch-clamp experiments. Western blots were used to investigate the activation of intracellular signalling pathways. EP4 receptor internalization was measured using immunocytochemistry.
Key Results: Different pathways mediate the inhibition of EP2 and EP4 receptor-dependent pronociceptive effects by EP3 receptor stimulation. Inhibition of EP2 receptor-evoked pronociceptive effect critically depends on the kinase-independent function of the signalling protein PI3Kγ, and adenosine monophosphate activated protein kinase (AMPK) is involved. By contrast, inhibition of EP4 receptor-evoked pronociceptive effect is independent on PI3Kγ and mediated through activation of G protein-coupled receptor kinase 2 (GRK2), which enhances the internalization of the EP4 receptor after ligand binding.
Conclusion And Implications: Activation of neuronal PI3Kγ, AMPK, and GRK2 by EP3 receptor activation limits cAMP-dependent pain generation by prostaglandin E . These new insights hold the potential for a novel approach in pain therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bph.15971 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!