Carbon monoxide (CO) as one of the therapeutic gaseous molecules has been widely applied for treating various diseases, especially in cancer therapy. However, the in situ-triggered and efficient transport of CO to tumors are the primary obstacles that limit its clinical applicability. To address this obstacle, herein, a HO-triggered CO gas releasing nanoplatform has been designed by embedding manganese carbonyl (MnCO) into Zr (IV)-based metal-organic frameworks (MOFs). The porous structures of MOFs provide encapsulation capacity for glucose oxidase (GOx) loading, thereby catalyzing the endogenous glucose into gluconic acid and HO to accelerate CO release and energy depletion. In the meantime, the Mn produced by MnCO can react with intracellular HO via the Fenton reaction to form cytotoxic •OH. Therefore, the synthesized gas nanogenerator demonstrated a synergistic efficacy of CO gas therapy, reactive oxygen species (ROS)-mediated therapy, and energy starvation to prevent tumor growth. Both in vitro and in vivo studies indicated that this multifunctional nanoplatform not only successfully inhibited tumors through a synergistic effect, but also provided a new technique for the creation of starvation/gas/chemodynamic combination therapy in a single material. STATEMENT OF SIGNIFICANCE: In this study, we developed a HO responsive CO gas nanogenerator to augment the in-situ generation of CO gas for combined modality therapy of tumors. The nanogenerator was constructed by encapsulating glucose oxidase (GOx) and manganese carbonyl (MnCO) into UiO-67-bpy, which can catalyze the conversion of intracellular glucose to HO for cutting off energy supply of cancer cells. Meanwhile, the cumulated HO can trigger the release of CO for gas therapy and generation of •OH for chemodynamic therapy (CDT) via the Fenton-like reaction, thereby resulting in apoptosis of the cancer cells. Collectively, our designed nanotherapeutic agent not only displays the synergistic therapy efficacy of starvation-enhanced CO gas therapy and CDT, but also provides an efficient strategy for developing the intelligent nanocarrier for CO gas delivery and release.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2022.10.018DOI Listing

Publication Analysis

Top Keywords

gas therapy
12
therapy
10
gas
8
manganese carbonyl
8
carbonyl mnco
8
glucose oxidase
8
oxidase gox
8
gas nanogenerator
8
cancer cells
8
therapy cdt
8

Similar Publications

Article Synopsis
  • The article evaluates the effectiveness and safety of a combination treatment of atropine (ATR) and omeprazole (OME) for acute gastritis (AG) in comparison to anisodamine (ADM) with OME.
  • The study involved 95 patients, with the ATR+OME group showing a higher success rate, fewer side effects, and quicker symptom relief than the ADM+OME group.
  • Results indicated that the ATR+OME treatment significantly reduced inflammatory markers and gastrointestinal hormone levels, suggesting its strong efficacy and safety for managing AG, making it suitable for wider clinical use.
View Article and Find Full Text PDF

Acute kidney injury (AKI) has been reported to occur in 30-70% of asphyxiated neonates. Hydrogen (H) gas became a major research focus in neonatal medicine after the identification of its robust antioxidative properties. However, the ability of H gas to ameliorate AKI is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Oral mucosal wounds are susceptible to inflammation and complications due to exposure to microorganisms, which can hinder daily activities and diminish quality of life.
  • A novel therapeutic nanoplatform, DATS@Arg-EA-SA, has been developed to target these wounds by combining guanidinated dendritic peptides with diallyl trisulfide (DATS), providing both antimicrobial and anti-inflammatory effects.
  • This nanoplatform effectively eliminates various bacteria, including drug-resistant strains like MRSA, and enhances healing by promoting the transition of inflammatory cells and alleviating pain, making it a promising solution for oral wound treatment.
View Article and Find Full Text PDF

Synchronous Interference of Dual Metabolic Pathways Mediated by HS Gas/GOx for Augmenting Tumor Microwave Thermal Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.

View Article and Find Full Text PDF

Gualou-Xiebai-Banxia (GXB) decoction shows potential for treating myocardial ischemia (MI), although its underlying mechanism is not fully understood. In this study, a multimodal metabolomics approach, combining gas chromatography-mass spectrometry (GC-MS) and H-NMR, was employed to investigate the cardioprotective effects of GXB in a rat model of myocardial ischemia induced by ligation. ELISA assays and HE staining demonstrated that GXB effectively reduced myocardial injury, oxidative stress markers, and myocardial fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!