Carbon monoxide (CO) as one of the therapeutic gaseous molecules has been widely applied for treating various diseases, especially in cancer therapy. However, the in situ-triggered and efficient transport of CO to tumors are the primary obstacles that limit its clinical applicability. To address this obstacle, herein, a HO-triggered CO gas releasing nanoplatform has been designed by embedding manganese carbonyl (MnCO) into Zr (IV)-based metal-organic frameworks (MOFs). The porous structures of MOFs provide encapsulation capacity for glucose oxidase (GOx) loading, thereby catalyzing the endogenous glucose into gluconic acid and HO to accelerate CO release and energy depletion. In the meantime, the Mn produced by MnCO can react with intracellular HO via the Fenton reaction to form cytotoxic •OH. Therefore, the synthesized gas nanogenerator demonstrated a synergistic efficacy of CO gas therapy, reactive oxygen species (ROS)-mediated therapy, and energy starvation to prevent tumor growth. Both in vitro and in vivo studies indicated that this multifunctional nanoplatform not only successfully inhibited tumors through a synergistic effect, but also provided a new technique for the creation of starvation/gas/chemodynamic combination therapy in a single material. STATEMENT OF SIGNIFICANCE: In this study, we developed a HO responsive CO gas nanogenerator to augment the in-situ generation of CO gas for combined modality therapy of tumors. The nanogenerator was constructed by encapsulating glucose oxidase (GOx) and manganese carbonyl (MnCO) into UiO-67-bpy, which can catalyze the conversion of intracellular glucose to HO for cutting off energy supply of cancer cells. Meanwhile, the cumulated HO can trigger the release of CO for gas therapy and generation of •OH for chemodynamic therapy (CDT) via the Fenton-like reaction, thereby resulting in apoptosis of the cancer cells. Collectively, our designed nanotherapeutic agent not only displays the synergistic therapy efficacy of starvation-enhanced CO gas therapy and CDT, but also provides an efficient strategy for developing the intelligent nanocarrier for CO gas delivery and release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2022.10.018 | DOI Listing |
Pak J Pharm Sci
January 2025
Jian'ou Municipal Hospital, Nanping, Fujian, China.
Sci Rep
January 2025
Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan.
Acute kidney injury (AKI) has been reported to occur in 30-70% of asphyxiated neonates. Hydrogen (H) gas became a major research focus in neonatal medicine after the identification of its robust antioxidative properties. However, the ability of H gas to ameliorate AKI is unknown.
View Article and Find Full Text PDFActa Biomater
January 2025
School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, P. R. China. Electronic address:
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
Gualou-Xiebai-Banxia (GXB) decoction shows potential for treating myocardial ischemia (MI), although its underlying mechanism is not fully understood. In this study, a multimodal metabolomics approach, combining gas chromatography-mass spectrometry (GC-MS) and H-NMR, was employed to investigate the cardioprotective effects of GXB in a rat model of myocardial ischemia induced by ligation. ELISA assays and HE staining demonstrated that GXB effectively reduced myocardial injury, oxidative stress markers, and myocardial fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!