A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preparation of copper-based catalysts from electroplating sludge by ultrasound treatment and their antibiotic degradation performance. | LitMetric

Preparation of copper-based catalysts from electroplating sludge by ultrasound treatment and their antibiotic degradation performance.

Environ Res

School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China.

Published: January 2023

The recovery of heavy metals from electroplating sludge is important for alleviating heavy metal pollution and recycling metal resources. However, the selective recovery of metal resources is limited by the complexity of electroplating sludge. Herein, CuFe bimetallic Fenton-like catalysts were successfully prepared from electroplating sludge by a facile room-temperature ultrasonic-assisted co-precipitation method. The prepared CuFe-S mainly consisted of nanorods with diameters of 20-30 nm and lengths of 100-200 nm and a small number of irregular particles. Subsequently, we performed tetracycline (TC) degradation experiments, and the results showed that the product CuFe-S had very good performance over a wide pH range (2-11). At an initial pH = 2, CuFe-S could degrade 91.9% of 50 mg L TC aqueous solution within 30 min, which is better than that of a single metal catalyst. Free radical scavenging experiments and electron paramagnetic resonance (EPR) tests revealed that ·OH was the main active species for the degradation of TC by CuFe-S. In conclusion, a CuFe bimetallic Fenton-like catalyst was developed for the catalytic degradation of antibiotics, which provides a novel technical route for the resource utilization of electroplating sludge and shows an important practical application prospect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.114567DOI Listing

Publication Analysis

Top Keywords

electroplating sludge
20
metal resources
8
cufe bimetallic
8
bimetallic fenton-like
8
electroplating
5
sludge
5
preparation copper-based
4
copper-based catalysts
4
catalysts electroplating
4
sludge ultrasound
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!