A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regulation of macrophage activation by S-Nitrosothiols following ozone-induced lung injury. | LitMetric

Regulation of macrophage activation by S-Nitrosothiols following ozone-induced lung injury.

Toxicol Appl Pharmacol

Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America. Electronic address:

Published: December 2022

Acute exposure to ozone causes oxidative stress, characterized by increases in nitric oxide (NO) and other reactive nitrogen species in the lung. NO has been shown to modify thiols generating S-nitrosothiols (SNOs); this results in altered protein function. In macrophages this can lead to changes in inflammatory activity which impact the resolution of inflammation. As SNO formation is dependent on the redox state of both the NO donor and the recipient thiol, the local microenvironment plays a key role in its regulation. This dictates not only the chemical feasibility of SNO formation but also mechanisms by which they may form. In these studies, we compared the ability of the SNO donors, ethyl nitrite (ENO), which targets both hydrophobic and hydrophilic thiols, SNO-propanamide (SNOPPM) which targets hydrophobic thiols, and S-nitroso-N-acetylcysteine. (SNAC) which targets hydrophilic thiols. to modify macrophage activation following ozone exposure. Mice were treated with air or ozone (0.8 ppm, 3 h) followed 1 h later by intranasal administration of ENO, SNOPPM or SNAC (1-500 μM) or appropriate controls. Mice were euthanized 48 h later. Each of the SNO donors reduced ozone-induced inflammation and modified the phenotype of macrophages both within the lung lining fluid and the tissue. ENO and SNOPPM were more effective than SNAC. These findings suggest that the hydrophobic SNO thiol pool targeted by SNOPPM and ENO plays a major role in regulating macrophage phenotype following ozone induced injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250783PMC
http://dx.doi.org/10.1016/j.taap.2022.116281DOI Listing

Publication Analysis

Top Keywords

macrophage activation
8
sno formation
8
sno donors
8
targets hydrophobic
8
hydrophilic thiols
8
eno snoppm
8
sno
5
regulation macrophage
4
activation s-nitrosothiols
4
s-nitrosothiols ozone-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!