Background: Sleep is fragmented by brief arousals, and excessive arousal burden has been linked to increased cardiovascular (CV) risk, but mechanisms are poorly understood.

Research Question: Do arousals trigger cardiac ventricular repolarization lability that may predispose people to long-term cardiovascular mortality?

Study Design And Methods: This study analyzed 407,541 arousals in the overnight polysomnograms of 2,558 older men in the Osteoporotic Fractures in Men sleep study. QT and RR intervals were measured beat-to-beat starting 15 s prior to arousal onset until 15 s past onset. Ventricular repolarization lability was quantified by using the QT variability index (QTVi).

Results: During 10.1 ± 2.5 years of follow-up, 1,000 men died of any cause, including 348 CV deaths. During arousals, QT and RR variability increased on average by 5 and 55 ms, respectively, resulting in a paradoxical transient decrease in QTVi from 0.07 ± 1.68 to -1.00 ± 1.68. Multivariable Cox proportional hazards analysis adjusted for age, BMI, cardiovascular and respiratory risk factors, sleep-disordered breathing and arousal, diabetes, and Parkinson disease indicated that excessive QTVi during arousal was independently associated with all-cause and CV mortality (all-cause hazard ratio, 1.20 [95% CI, 1.04-1.38; P = .012]; CV hazard ratio, 1.29 [95% CI, 1.01 -1.65; P = .043]).

Interpretation: Arousals affect ventricular repolarization. A disproportionate increase in QT variability during arousal is associated with an increased all-cause and CV mortality and may reflect ventricular repolarization maladaptation to the arousal stimulus. Whether arousal-related QTVi can be used for more tailored risk stratification warrants further study, including evaluating whether arousal suppression attenuates ventricular repolarization lability and reduces subsequent mortality.

Clinical Trial Registration: ClinicalTrials.gov; No.: NCT00070681; URL: www.

Clinicaltrials: gov.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899642PMC
http://dx.doi.org/10.1016/j.chest.2022.09.043DOI Listing

Publication Analysis

Top Keywords

ventricular repolarization
24
repolarization lability
16
all-cause mortality
8
hazard ratio
8
arousal
7
ventricular
6
repolarization
6
arousals
5
sleep arousal-related
4
arousal-related ventricular
4

Similar Publications

The impact of obesity on heart rate variability (HRV) and ventricular repolarization, both vital indicators of cardiovascular health, is the focus of this review. Obesity, measured by BMI, waist circumference, and waist-to-hip ratio, significantly increases cardiovascular disease (CVD) risk due to structural and autonomic heart changes. Findings show that obese individuals exhibit prolonged QT and Tpeak-to-Tend (Tpe) intervals, suggesting delayed ventricular recovery and greater arrhythmia risk.

View Article and Find Full Text PDF

A Probabilistic Modeling Framework for the Prediction of Spontaneous Premature Beats and Reentry Initiation.

Heart Rhythm

January 2025

Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA. Electronic address:

Background: Spontaneously occurring life threatening reentrant arrhythmias result when a propagating premature beat encounters a region with significant dispersion of refractoriness. Although localized structural tissue heterogeneities and prescribed cell functional gradients have been incorporated into computational electrophysiological models, a quantitative framework for the evolution from normal to abnormal behavior that occurs via disease is lacking.

Objective: The purpose of this study was to develop a probabilistic modeling framework that represents the complex interplay of cell function and tissue structure in health and disease which predicts the emergence of premature beats and the initiation of reentry.

View Article and Find Full Text PDF

Poincaré plot analysis of ECG uncovers beneficial effects of omaveloxolone in a mouse model of Friedreich's ataxia.

Heart Rhythm

January 2025

Department of Molecular Biosciences, University of California, Davis, CA, USA; Department of Basic Sciences, California Northstate University, Elk Grove, CA. Electronic address:

Background: Friedreich's ataxia (FA) is a rare inherited neuromuscular disorder, where most patients die from lethal cardiomyopathy and arrhythmias. Mechanisms leading to arrhythmic events in FA patients are poorly understood.

Objective: This study aims to examine cardiac electrical signal propagation in mouse model of FA with severe cardiomyopathy and evaluate effects of omaveloxolone (OMAV), the first FDA-approved therapy.

View Article and Find Full Text PDF

X-Chromosome-Linked miRNAs Regulate Sex Differences in Cardiac Physiology.

Circ Res

December 2024

Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill. (W.S., J.P.-L., W.G.W., W.F.M., F.L.C.).

Background: Males and females exhibit distinct anatomic and functional characteristics of the heart, predisposing them to specific disease states.

Methods: We identified microRNA (miRNAs/miR) with sex-differential expression in mouse hearts.

Results: Four conserved miRNAs are present in a single locus on the X-chromosome and are expressed at higher levels in females than males.

View Article and Find Full Text PDF

Inhibitory Effects of Cenobamate on Multiple Human Cardiac Ion Channels and Possible Arrhythmogenic Consequences.

Biomolecules

December 2024

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a novel third-generation antiepileptic drug used for the treatment of focal onset seizures and particularly for multi-drug-resistant epilepsy; it acts on multiple targets: GABA receptors (EC 42-194 µM) and persistent neuronal Na currents (IC 59 µM). Side effects include QT interval shortening with >20 ms, but not <300 ms. Our in vitro cardiac safety pharmacology study was performed via whole-cell patch-clamp on HEK293T cells with persistent/inducible expression of human cardiac ion channel isoforms hNav1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!