Cytomegalovirus (CMV) infection causes newborn deafness, and the death of the spiral ganglion neurons (SGNs) is crucial in determining the degree of CMV-related hearing loss. Therefore, understanding the psychopathology of CMV-related SGN loss is important for identifying targets and exploring treatment strategies. In this study, we found that pyroptosis and apoptosis, two inflammasome-related programmed cell death pathways, are involved in CMV-induced SGN death and are mainly regulated by activated caspase-1 and caspase-8. Moreover, suppressing inflammasome assembly by blocking apoptosis-associated speck-like protein containing a CARD (ASC) interaction inhibited the activation of both caspase-1 and caspase-8, rescued SGN death, and improved hearing loss in CMV-infected newborn mice. Therefore, we propose that ASC inflammasome might be a promising target for treating CMV-related SGN death and newborn hearing loss by inhibiting caspase-1 and caspase-8 activated pyroptosis and apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2022.109305 | DOI Listing |
Alzheimers Dement
December 2024
University of Miami, Miami, FL, USA.
Background: The global ageing population is rising with each year, and with that, the percentage of individuals with Alzheimer's disease (AD) is expected to rise in parallel. Along with age, traumatic brain injury (TBI) is another risk factor for AD. TBI and AD patients demonstrate abnormal inflammatory responses, including that of the inflammasome.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
October 2024
State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine Chengdu 611137, China.
This study investigated the anti-gastric cancer activity and mechanism of Panacis Quinquefolii Radix(Panax quinquefolium L.), and preliminarily compared the in vivo anti-gastric cancer efficacy of American-imported(JK-AG) and domestically produced(Shandong) Panacis Quinquefolii Radix decoctions(SD-AG). Based on network pharmacology predictions, a LUC-MGC803 cell ectopic gastric cancer nude mouse model was established.
View Article and Find Full Text PDFPestic Biochem Physiol
December 2024
College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural, Harbin, 150030, China. Electronic address:
Emamectin benzoate (EMB) is a pesticide that is frequently used. Nanoplastics (NPs) are a recently identified class of pollutants that are ubiquitous in the environment. In the aquatic environment, NPs can appear together with EMB, which may exacerbates the damage to water and aquatic organisms.
View Article and Find Full Text PDFUnlabelled: Multiple cell death and inflammatory signaling pathways converge on two critical factors: receptor interacting serine/threonine kinase 1 (RIPK1) and caspase-8. Careful regulation of these molecules is critical to control apoptosis, pyroptosis and inflammation. Here we discovered a pivotal role of Raver1 as an essential regulator of pre-mRNA splicing, expression, and functionality, and the subsequent caspase-8-dependent inflammatory cell death.
View Article and Find Full Text PDFJ Trace Elem Med Biol
November 2024
College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China. Electronic address:
With the application of copper nanoparticles (nano-Cu) in livestock and poultry feed addition, their biotoxicity has been gradually recognized. Therefore, it has become an urgent problem to find the effective natural antagonists to reduce the toxicity of copper nanoparticles. Here, we found that hesperidin could alleviate nano-Cu-induced pathological injury in the immune organs of chickens via the histopathological examination of the spleen, thymus, and bursa of Fabricius.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!