Endogenous spermidine can improve the resistance of plants to saline-alkali stress. SlSPDS1 and SlSPDS2 are the main spermidine synthase (SPDS) genes in tomatoes. In comparison with SlSPDS1, SlSPDS2 plays an important role in wild-type tomato seedling under saline-alkali stress. However, limited research has focused on the role of SlSPDS2 in saline-alkali stress. Wild-type (WT) and SPDS gene (SlSPDS2) transgenic over-expression tomato seedlings were used to explore the function of endogenous spermidine on the saline-alkali resistance of tomato seedlings. The results show that SlSPDS2 overexpression under normal conditions and saline-alkali stress increased the content of endogenous free polyamines and the expression levels of polyamine synthesis-related genes in tomato seedlings. Under saline-alkali stress, SlSPDS2 overexpression significantly reduced Na/K ratio, relative electrical conductivity, O, HO, and malondialdehyde content, increased Seedling index, relative water content, antioxidant enzyme activities (peroxidase, superoxide dismutase, and catalase), and the contents of proline and soluble sugar in tomato leaf, and mitigated the adverse effect of saline-alkali stress on tomato seedlings. In summary, the overexpression of SlSPDS2 tomato seedlings regulated the ionic homeostasis, antioxidant enzyme system, and osmotic regulatory substances of tomato seedlings living in saline-alkali environment by increasing endogenous free polyamine content, thereby improving the resistance of tomato seedlings against saline-alkali stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2022.09.025 | DOI Listing |
Plant Cell Environ
January 2025
Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China.
The HKT-type proteins have been extensively studied and have been shown to play important roles in long-distance Na transport, maintaining ion homoeostasis and improving salt tolerance in plants. However, there have been no reports on the types, characteristics and functions of HKT-type proteins in Limonium bicolor, a recretohalophyte species with the typical salt gland structure. In this study, five LbHKT genes were identified in L.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China. Electronic address:
Alkaline salts have more severe adverse effects on plant growth and development than neutral salts do. However, the adaptive mechanisms of plants to alkaline salt stress remain poorly understood, especially at the molecular level. The Songnen Plain in northeast China is composed of typical 'soda' saline-alkali soil, with NaHCO and NaCO as the predominant alkaline salts (pH ≥ 9.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia.
Water scarcity is a foremost environmental concern and is expected to hasten in the forthcoming years due to severe fluctuations in weather patterns worldwide. The present work was designed to explore the potential role of alpha-tocopherol (α-Toc), a form of vitamin E, on the morphological, physio-biochemical, and cellular antioxidant responses of two radish genotypes grown under drought conditions (38 ± 3% of field capacity). The individual and combined applications of α-Toc (100 ppm) were used as T0- Control, T1- Control + TF (TF-alpha-tocopherol), T2- Drought (D), and T3- D + TF with three replications.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China. Electronic address:
Soil salinization is one of the main problems leading to a reduction in arable land area. In the present study, strongly salt-tolerant lines were screened for germination rates and physiological indices. The mechanism of saline-alkali stress tolerance in winter rapeseed was examined using transcriptome and metabolome analyses.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China.
Here, we evaluated the role of ethylene in regulating the NaHCO stress tolerance of grapevines and clarified the mechanism by which VvERF1B regulates the response to NaHCO stress. The exogenous application of ACC and VvACS3 overexpression in grapevines and grape calli revealed that ethylene increased NaHCO stress tolerance, and this was accompanied by increased plasma membrane H-ATPase (PMA) activity. The expression of VvERF1B was strongly induced by ACC, and overexpression of this gene in grapevines conferred increased NaHCO stress tolerance and enhanced PMA activity and H and oxalate secretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!