Oxidative stress in plants caused by UV-B stress has always been a great challenge to the yield of agricultural products. Carbon dots (CDs) with enzyme-like activity have been developed, and inhibiting oxidative stress in animals has been achieved, but little is known about abiotic stress resistance in plants, especially UV-B stress. In this study, CDs were synthesized from Scutellaria baicalensis via a hydrothermal method. The ability of CDs to scavenge reactive oxygen species (ROS) in vivo and in vitro and to enhance antioxidant resistance in vivo was evaluated. The results show that CDs promoted the nutrient assimilation ability of lettuce seedlings and protected the plants from UV-B stress by increasing the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione reductase (GR), and ascorbate peroxidase (APX). Moreover, the antioxidant metabolism of plants can be activated by CDs and the expression levels of aquaporin (AQP) genes PIP1 and PIP2 are also up-regulated. These results facilitate the design and fabrication of CDs to meet the challenge of abiotic stress in food production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2022.114177DOI Listing

Publication Analysis

Top Keywords

uv-b stress
16
stress
8
scutellaria baicalensis
8
carbon dots
8
oxidative stress
8
abiotic stress
8
plants uv-b
8
cds
6
inhibition uv-b
4
stress lettuce
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!