Generation of Sub-nanosecond H Atom Pulses for Scattering from Single-Crystal Epitaxial Graphene.

J Phys Chem A

Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, and Institute for Physical Chemistry, Georg-August-University Göttingen, Tammannstrasse 6, D-37077Göttingen, Germany.

Published: November 2022

Pulsed molecular beams allow high-density gas samples to be cooled to low internal temperatures and to produce narrow speed distributions. They are particularly useful in combination with pulsed-laser-based detection schemes and have also been used as pump pulses in pump-probe experiments with neutral matter. The mechanical response of pulsed valves and chopper wheels limits the duration of these pulses typically to about 10-100 μs. Bunch compression photolysis has been proposed as a means to produce atomic pulses shorter than 1 ns─an experimental capability that would allow new measurements to be made on chemical systems. This technique employs a spatially chirped femtosecond duration photolysis pulse that produced an ensemble of H atom photoproducts that rebunches into a short pulse downstream. To date, this technique could not produce strong enough beams to allow new experiments to be carried out. In this paper, we report production of pulsed H atom beams consistent with a 700 ps pulse duration and with sufficient intensity to carry out differentially resolved inelastic H scattering experiments from a graphene surface. We observe surprisingly narrow angular distributions for H atoms incident normal to the surface. At low incidence energies quasi-elastic scattering dominates, and at high incidence energy we observe a strongly inelastic scattering channel. These results provide the basis for future experiments where the H atoms synchronously collide with a pulsed-laser-excited surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9639161PMC
http://dx.doi.org/10.1021/acs.jpca.2c05364DOI Listing

Publication Analysis

Top Keywords

beams allow
8
inelastic scattering
8
generation sub-nanosecond
4
sub-nanosecond atom
4
pulses
4
atom pulses
4
scattering
4
pulses scattering
4
scattering single-crystal
4
single-crystal epitaxial
4

Similar Publications

A novel multi-molecular beam/infrared reflection absorption spectroscopy (IRAS) apparatus is described, which was constructed for studying mechanisms and kinetics of heterogeneously catalyzed reactions following a rigorous surface science approach in the pressure range from ultrahigh vacuum (UHV, 1 × 10-10 mbar) to near-ambient pressure (NAP, 1000 mbar) conditions. The apparatus comprises a preparation chamber equipped with standard surface science tools required for the preparation and characterization of model heterogeneous catalysts and two reaction chambers operating at different pressure ranges: in UHV and in the variable pressure range up to NAP conditions. The UHV reaction chamber contains two effusive molecular beams (flux up to 1.

View Article and Find Full Text PDF

Single-shot ptychography is a quantitative phase imaging method wherein overlapping beams of light arranged in a grid pattern simultaneously illuminate a sample, allowing a full ptychographic dataset to be collected in a single shot. It is primarily used at optical wavelengths, but there is interest in using it for x-ray imaging. However, constraints imposed by x-ray optics have limited the resolution achievable to date.

View Article and Find Full Text PDF

Experimental arrangement to study the impact of atmospheric turbulence on user-defined beams.

Rev Sci Instrum

January 2025

Applied and Adaptive Optics Laboratory, Department of Physics, Indian Institute of Space Science and Technology, Thiruvananthapuram 695547, Kerala, India.

In the present work, we propose an experimental setup to investigate the effect of atmospheric turbulence on user-defined beams. The user-defined beams were formed by writing reconfigurable patterns on a spatial light modulator, allowing the impact of atmospheric turbulence to be investigated simultaneously and in real time. The programmable controllability provides several flexibilities to the system, such as the ability to create different beam types simultaneously, control the separation between different beams, compensate for aberrations, and easily switch between different beam types.

View Article and Find Full Text PDF

Atomic nuclei serve as prime laboratories for investigations of complex quantum phenomena, where minor nucleon rearrangements cause significant structural changes. Pb is the heaviest known neutron-deficient Pb isotope that can exhibit three distinct shapes: prolate, oblate, and spherical, with nearly degenerate excitation energies. Here we report on the combined results from three state-of-the-art measurements to directly observe these deformations in Pb.

View Article and Find Full Text PDF

The failure mode of thin-walled C-channel beams typically manifests as premature local buckling of the compression flange, leading to insufficient utilization of material strength in both the flange and the web. To address this issue, this study adopts the approach of increasing the number of bends to reinforce the flange and adding V-shaped stiffeners in the middle of the web to reduce the width-to-thickness ratio of the plate elements, thereby delaying local buckling and allowing for greater plastic deformation. However, the challenge lies in the irregular cross-sectional shape and complex buckling patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!