MeDBA: the Metalloenzyme Data Bank and Analysis platform.

Nucleic Acids Res

Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China.

Published: January 2023

Metalloenzymes are attractive research targets in fields of chemistry, biology, and medicine. Given that metalloenzymes can manifest conservation of metal-coordination and ligand binding modes, the excavation and expansion of metalloenzyme-specific knowledge is of interest in bridging metalloenzyme-related fields. Building on our previous metalloenzyme-ligand association database, MeLAD, we have expanded the scope of metalloenzyme-specific knowledge and services, by forming a versatile platform, termed the Metalloenzyme Data Bank and Analysis (MeDBA). The MeDBA provides: (i) manual curation of metalloenzymes into different categories, that this M-I, M-II and M-III; (ii) comprehensive information on metalloenzyme activities, expression profiles, family and disease links; (iii) structural information on metalloenzymes, in particular metal binding modes; (iv) metalloenzyme substrates and bioactive molecules acting on metalloenzymes; (v) excavated metal-binding pharmacophores and (vi) analysis tools for structure/metal active site comparison and metalloenzyme profiling. The MeDBA is freely available at https://medba.ddtmlab.org.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825548PMC
http://dx.doi.org/10.1093/nar/gkac860DOI Listing

Publication Analysis

Top Keywords

metalloenzyme data
8
data bank
8
bank analysis
8
binding modes
8
metalloenzyme-specific knowledge
8
metalloenzymes
5
medba
4
medba metalloenzyme
4
analysis platform
4
platform metalloenzymes
4

Similar Publications

Resynthesis of Damaged Fe-S Cluster Proteins Protects Against Oxidative Stress in the Absence of Mn-Superoxide Dismutase.

J Fungi (Basel)

November 2024

Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.

Article Synopsis
  • Manganese superoxide dismutase (Mn-SOD) is vital for maintaining mitochondrial function, and its absence heightens sensitivity to oxidative stress and iron limitation.
  • Deleting the Mn-SOD gene resulted in increased vulnerability to oxidative damage and made fungal spores more susceptible to destruction by human immune cells.
  • Analysis revealed that this gene deletion notably altered the oxidative stress response, impacting the regulation of genes related to iron management and protein synthesis in response to stress.
View Article and Find Full Text PDF

Background: The relationship between tumour necrosis factor (TNF) levels and disease progression is well-established. However, the impact of changes in the level of TNF hydrolase (A-disintegrin and metalloenzyme 17; ADAM17) in HIV patients remains to be fully elucidated.

Methods: Between March 1 and December 31, 2017, data were collected from 64 HIV-positive individuals in Wenzhou.

View Article and Find Full Text PDF

Mechanistic Insights Into Post-translational α-Keto-β-Amino Acid Formation by a Radical S-Adenosyl Methionine Peptide Splicease.

Angew Chem Int Ed Engl

December 2024

ETH Zurich: Eidgenossische Technische Hochschule Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 1-5/10, HCI G433, 8008, Zürich, SWITZERLAND.

Radical S-adenosyl methionine enzymes catalyze a diverse repertoire of post-translational modifications in protein and peptide substrates. Among these, an exceptional and mechanistically obscure example is the installation of α-keto-β-amino acid residues by formal excision of a tyrosine-derived tyramine unit. The responsible spliceases are key maturases in a widespread family of natural products termed spliceotides that comprise potent protease inhibitors, with the installed β-residues being crucial for bioactivity.

View Article and Find Full Text PDF

Peroxynitrite (ONOO) is a highly reactive nitrogen species that can cause significant damage to proteins, lipids, and DNA. Various enzymes, including metalloenzymes, play crucial roles in reducing ONOO concentrations to protect cellular components. While the interaction of ONOO with heme proteins is well known, the reduction by Cu-containing proteins is less studied.

View Article and Find Full Text PDF

Tyrosinases: a family of copper-containing metalloenzymes.

ChemTexts

November 2024

Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.

Tyrosinases (TYRs) are a family of copper-containing metalloenzymes that are present in all domains of life. TYRs catalyze the reactions that start the biosynthesis of melanin, the main pigment of the animal kingdom, and are also involved in the formation of the bright colors seen on the caps of mushrooms and in the petals of flowers. TYRs catalyze the -hydroxylation and oxidation of phenols and the oxidation of catechols to the respective -quinones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!