miR-124-3p sabotages lncRNA MALAT1 stability to repress chondrocyte pyroptosis and relieve cartilage injury in osteoarthritis.

J Orthop Surg Res

Department of Fourth Orthopedics, Traditional Chinese Medicine Hospital, Affiliated to Xinjiang Medical University, No. 116, Huanghe Road, Ürümqi, 830000, Xinjiang, People's Republic of China.

Published: October 2022

Background: Osteoarthritis (OA) is a prevalent inflammatory joint disorder. microRNAs (miRNAs) are increasingly involved in OA.

Aim: Our study is proposed to clarify the role of miR-124-3p in chondrocyte pyroptosis and cartilage injury in OA.

Methods: OA mouse model was established via the treatment of destabilization of the medial meniscus (DMM), and the in vitro cell model was also established as mouse chondrocytes were induced by lipopolysaccharide (LPS). Mouse cartilage injury was assessed using safranin-O-fast green staining, hematoxylin-eosin staining, and OARSI grading method. Expressions of miR-124-3p, MALAT1, KLF5, and CXCL11 were determined. Cartilage injury (MMP-13, osteocalcin), inflammation (IL-6, IL-2, TNF-, IL-1β, and IL-18)- and pyroptosis-related factors (Cleaved Caspase-1 and GSDMD-N) levels were detected. Mechanically, MALAT1 subcellular localization was confirmed. The binding relationships of miR-124-3p and MALAT1 and MALAT1 and KLF5 were verified. MALAT1 half-life period was detected. Then, miR-124-3p was overexpressed using agomiR-124-3p to perform the rescue experiments with oe-MALAT1 or oe-CXCL11.

Results: miR-124-3p was downregulated in DMM mice and LPS-induced chondrocytes where cartilage injury, and increased levels of inflammation- and pyroptosis-related factors were found. miR-124-3p overexpression relieved cartilage injury and repressed chondrocyte pyroptosis. miR-124-3p bounds to MALAT1 to downregulate its stability and expression, and MALAT1 bounds to KLF5 to enhance CXCL11 transcription. Overexpression of MALAT1 or CXCL11 annulled the repressive function of miR-124-3p in chondrocyte pyroptosis.

Conclusion: miR-124-3p reduced MALAT1 stability and inhibited the binding of MALAT1 and KLF5 to downregulate CXCL11, thereby suppressing chondrocyte pyroptosis and cartilage injury in OA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571420PMC
http://dx.doi.org/10.1186/s13018-022-03334-8DOI Listing

Publication Analysis

Top Keywords

cartilage injury
28
chondrocyte pyroptosis
16
malat1 klf5
12
malat1
11
mir-124-3p
10
malat1 stability
8
mir-124-3p chondrocyte
8
pyroptosis cartilage
8
model established
8
mir-124-3p malat1
8

Similar Publications

Bone marrow stimulation treatment by bone marrow stromal cells (BMSCs) released from the bone medullary cavity and differentiated into cartilage via microfracture surgery is a frequently employed technique for treating articular cartilage injuries, yet the treatment presents a main drawback of poor cartilage regeneration in the elderly. Prior research indicated that aging could decrease the stemness capacity of BMSCs, thus we made a hypothesis that increasing old BMSCs (OBMSCs) stemness might improve the results of microfracture in the elderly. First, we investigated the correlation between microfracture outcomes and BMSCs stemness using clinical data and animal experiments.

View Article and Find Full Text PDF

Background: Meniscal injuries that fail to heal instigate catabolic changes in the knee's microenvironment, posing a high risk for developing posttraumatic osteoarthritis (PTOA). Previous research has suggested that human cartilage-derived progenitor cells (hCPCs) can stimulate meniscal repair in a manner that depends on stromal cell-derived factor 1 (SDF-1) pathway activity.

Hypothesis: Overexpressing the SDF-1 receptor CXCR4 in hCPCs will increase cell trafficking and further improve the repair efficacy of meniscal injuries.

View Article and Find Full Text PDF

Introduction: wrist ligament injuries and triangular fibrocartilage complex (TFCC) lesions are common but often underdiagnosed conditions causing chronic wrist pain. The diagnostic challenge necessitates a combination of clinical examination, imaging studies, and arthroscopy, considered the gold standard. Ligament injuries, particularly scapholunate ligament (SL), and TFCC lesions account for significant wrist instability and ulnar-sided wrist pain, respectively.

View Article and Find Full Text PDF

Medial meniscus root tears (MMRTs) are serious injuries that disrupt knee biomechanics, often accelerating cartilage degeneration and osteoarthritis when left untreated. These injuries are increasingly recognized as a major cause of knee pain and functional limitations, particularly among middle-aged and older adults. This systematic review and meta-analysis aimed to evaluate the outcomes of conservative management compared to surgical intervention for MMRT, focusing on pain relief, functional recovery, and the progression of osteoarthritis.

View Article and Find Full Text PDF

Osteochondritis dissecans is a rare condition characterized by the deterioration of a small area of bone and cartilage without infection. Its exact cause is unclear, though factors such as abnormal bone development, joint pressure, repetitive injuries, inadequate blood supply, and genetic links have been observed. In this case, a 27-year-old woman experienced chronic right knee pain following a twisting injury, which led to reduced mobility and mild pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!