Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The half-life of human neutrophils is still controversial, with estimates ranging from 7-9 h to 3.75 days. This debate should be settled to understand neutrophil production in the bone marrow (BM) and the potential and limitations of emergency neutropoiesis following infection or trauma. Furthermore, cellular lifespan greatly influences the potential effect(s) neutrophils have on the adaptive immune response. We posit that blood neutrophils are in exchange with different tissues, but particularly the BM, as it contains the largest pool of mature neutrophils. Furthermore, we propose that the oldest neutrophils are the first to die following a so-called conveyor belt model. These guiding principles shed new light on our interpretation of existing neutrophil lifespan data and offer recommendations for future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.it.2022.09.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!