Role of Long Non-Coding RNAs in Human-Induced Pluripotent Stem Cells Derived Megakaryocytes: A p53, HOX Antisense Intergenic RNA Myeloid 1, and miR-125b Interaction Study.

J Pharmacol Exp Ther

Stem Cell Research Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India (S.D., S.R., R.K.G.) and Centre for Stem Cell Research, Christian Medical College, Vellore, India (V.T., S.R.V.)

Published: January 2023

Megakaryocytes (MKs) are rare polyploid cells found in the bone marrow and produce platelets. Platelets are small cell fragments that are essential during wound healing and vascular hemostasis. In vitro differentiation of MKs from human-induced pluripotent stem cell-derived CD34 hematopoietic stem cells (hiPSC-HSCs) could provide an alternative treatment option for thrombocytopenic patients as a platelet source. In this approach, we developed a method to produce functional MKs from hiPSC-HSCs using a xeno-free and feeder-free condition and minimize the variation and risk from animal-derived products in cell culture. We have also investigated the genome-wide expression as well as functional significance of long noncoding RNAs (lncRNAs) in hiPSC-HSC-derived MKs to get insight into MK biology. We have performed lncRNAs expression profiling by using the Human LncProfilers qPCR Array Kit and identified 26 differentially regulated lncRNAs in hiPSC-HSC-derived MKs as compared with those in hiPSC-HSCs. HOX antisense intergenic RNA myeloid 1 (HOTAIRM1) was the most highly upregulated lncRNA in hiPSC-HSC-derived MKs and phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic-differentiating K562 cells. Furthermore, we have studied the potential mechanism of HOTAIRM1 based on the interactions between HOTAIRM1, p53, and miR-125b in PMA-induced K562 cells. Our results demonstrated that during MK maturation, HOTAIRM1 might be associated with the transcriptional regulation of p53 via acting as a decoy for miR-125b. Thus, the interaction between HOTAIRM1, p53, and miR-125b is likely involved in controlling cell cycling (cyclin D1), reactive oxygen species production, and apoptosis to support terminal maturation of MKs. SIGNIFICANCE STATEMENT: In vitro generation of megakaryocytes (MKs) from human-induced pluripotent stem cell-derived hematopoietic stem cells (hiPSC-HSCs) could provide an alternative source of platelets for treating thrombocytopenic patients. This study has investigated the functional significance of long non-coding RNAs in hiPSC-HSC-derived MKs, which remains unclear. This study's findings suggest that the regulatory role of HOX antisense intergenic RNA myeloid 1 (HOTAIRM1) in p53-mediated regulation of cyclin D1 during megakaryocytopoiesis is to promote MK maturation by decoying miR-125b.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.121.001095DOI Listing

Publication Analysis

Top Keywords

hipsc-hsc-derived mks
16
human-induced pluripotent
12
pluripotent stem
12
stem cells
12
hox antisense
12
antisense intergenic
12
intergenic rna
12
rna myeloid
12
mks
9
long non-coding
8

Similar Publications

Role of Long Non-Coding RNAs in Human-Induced Pluripotent Stem Cells Derived Megakaryocytes: A p53, HOX Antisense Intergenic RNA Myeloid 1, and miR-125b Interaction Study.

J Pharmacol Exp Ther

January 2023

Stem Cell Research Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India (S.D., S.R., R.K.G.) and Centre for Stem Cell Research, Christian Medical College, Vellore, India (V.T., S.R.V.)

Megakaryocytes (MKs) are rare polyploid cells found in the bone marrow and produce platelets. Platelets are small cell fragments that are essential during wound healing and vascular hemostasis. In vitro differentiation of MKs from human-induced pluripotent stem cell-derived CD34 hematopoietic stem cells (hiPSC-HSCs) could provide an alternative treatment option for thrombocytopenic patients as a platelet source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!