Placental tissue intracellular calcium (Ca) regulates placental development and growth. Maternal high-fat diet (HFD) results in placental lipid accumulation, increased inflammation, reduced nutrient transport expression, and intrauterine growth restriction (IUGR). Currently, whether maternal HFD differentially affects placental and fetal growth and development under reduced Ca influx is not yet known. We hypothesized that maternal HFD feeding decreases placental growth and development resulting in IUGR and that reduction of Ca influx in the placenta worsens maternal HFD-induced placental dysfunction and IUGR. Three-week-old female B6129SF2/J wild type (WT) and transient receptor potential canonical 1 (TRPC1) protein deficient (KO) mice were fed normal fat (NF, 16 kcal % fat) and high fat (HF, 45 kcal % fat) diets for 12 weeks prior to mating with NF diet fed male mice. Fetuses and placentae were examined at mid- (D12) and late- (D18) gestation. At D12, maternal HFD had no effects on placental or fetal weight changes in WT and TRPC1 KO mice while absence of TRPC1 resulted in decreased placental and fetal weights. At D18, maternal HFD increased placental weights in both TRPC1 KO and WT mice, in part, by moderately increasing placental tissue triacylglyceride (TAG, P=.0632). At D12, mRNA expression of key placental growth factors including IGF1, PLGF, and VEGF were increased in WT compared to TRPC1 KO mice while IGF2 and VEGF mRNA expression were increased at D18. Results presented in our study demonstrated that maternal HFD increased placental weight, in part, due to increased lipid concentration resulting in IUGR and via an additive adverse effect of genotype and maternal HFD. Future studies are needed to determine the signaling mechanism underlying Ca influx reduction-induced placental dysfunction and IUGR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jnutbio.2022.109162 | DOI Listing |
Mol Cell Endocrinol
December 2024
Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, China. Electronic address:
The regulatory effect of breastfeeding on offspring metabolism has garnered significant attention as an effective strategy in combating childhood obesity. However, the underlying mechanism remains largely unknown. Through integrated analysis of multiple human milk peptide databases and functional screening, MDPAO1 (milk-derived peptide associated with obesity 1) was identified as having potential activity in promoting the expression of thermogenic genes.
View Article and Find Full Text PDFPLoS One
December 2024
School of Public Health, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia.
Introduction: Maternal health service (MHS) use is a key strategy to reduce maternal mortality. However, evidence is scarce in designing efficient intervention strategies in Ethiopia. Thus, we aimed to explore community members and healthcare providers' perceptions of MHS and barriers and facilitators of MHS use in southern Ethiopia.
View Article and Find Full Text PDFCell Mol Biol Lett
December 2024
Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Ave, Xicheng, Beijing, 100034, People's Republic of China.
Background: Maternal overnutrition, prevalent among women of childbearing age, significantly impacts offspring health throughout their lifetime. While DNA methylation of metabolic-related genes mediates the transmission of detrimental effects from maternal high-fat diet (HFD), its role in programming hepatic cholesterol metabolism in offspring, particularly during weaning, remains elusive.
Methods: Female C57BL/6 J mice were administered a HFD or control diet, before and during, gestation and lactation.
Nutrients
November 2024
2nd Department of Obstetrics and Gynecology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
: The rapidly increasing rate of obesity has become an extremely important public health problem, particularly in developed countries. Obesity is associated with a range of health problems, often referred to as the metabolic syndrome. Adipose tissue is now regarded as an endocrine organ responsible for the hormonal secretion of adipokines, which are cytokines involved in various physiological processes.
View Article and Find Full Text PDFJ Nutr Biochem
December 2024
Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China. Electronic address:
Poor intrauterine environments increase the prevalence for chronic metabolic diseases in offspring, whereas maternal exercise is an effective measure to break this vicious intergenerational cycle. Placenta is increasingly being studied to explore its role in maternal-fetal metabolic cross-talk. The association between placental miRNA and offspring development trajectories has been established, yet the specific role and mechanism thereof in maternal exercise-induced metabolic protection remain elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!