Photothermal therapy (PTT) was reported to induce synergistic immunogenic cell death (ICD) which may convert tumor cells into "therapeutic vaccines". However, this is often insufficient to prevent tumor recurrence, in part because of the immunosuppressive microenvironment in tumors. Therefore, remodeling tumor microenvironment is of great importance to enhance the therapeutic efficacy of PTT. We herein fabricated a versatile nano-photosensitizer by assembling quercetin and Ferrum ion (QFN). The released quercetin from QFN could reduce programmed death ligand 1 (PD-L1) in tumor cells by inhibiting the phosphorylation of JAK2 and STAT3, and reshape extracellular matrix (ECM) by down-regulating α-SMA fibroblast in tumors. Moreover, QFN could capture tumor antigen and deliver it to the tumor-draining lymph nodes after PTT, which further enhanced the activation of antigen-presenting cells. As a result, QFN-based PTT eliminated melanoma and induced long-term immune memory to prevent tumor metastasis and recurrence. This study provides an effective and translationally feasible photothermic agent for photothermal/immunotherapy. STATEMENT OF SIGNIFICANCE: The efficacy of photothermal therapy (PTT) in cancer treatment is often limited by the immunosuppressive microenvironment in tumors. Herein, we prepared a versatile photosensitizer by assembling quercetin and Ferrum ion (QFN). Upon near-infrared light irradiation, QFN-PTT induced cancer cells destruction and tumor antigen release. QFN then captured antigen and delivered it to the tumor-draining lymph nodes, thus promoting dendritic cell maturation and T cells activation. Quercetin released from QFN in tumors improved T cells infiltration and activation in tumor by regulating immunosuppressive microenvironment. The QFN-PTT-treated mice exhibited significantly elongated survival time, and gained strong anti-tumor immune memory to prevent tumor metastasis and recurrence. Thus, this work provided a simple and versatile photothermic agent, and it has important implications for designing effective and translationally feasible photosensitizers for PTT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2022.10.008 | DOI Listing |
Expert Rev Anticancer Ther
January 2025
School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar - Delhi, Punjab, India.
Introduction: Acute Myeloid Leukemia is a heterogeneous hematological malignancy characterized by the uncontrolled proliferation of abnormal myeloid cells. Besides several other genetic abnormalities developed in AML, FLT3 mutations are significant due to their worse prognostic impacts and therapeutic resistance. As a result, these mutations enable AML cells to develop mechanisms for evading immune surveillance.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
Background: The progression of bladder cancer (BC) from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) significantly increases disease severity. Although the tumor microenvironment (TME) plays a pivotal role in this process, the heterogeneity of tumor cells and TME components remains underexplored.
Methods: We characterized the transcriptomes of single cells from 11 BC samples, including 4 NMIBC, 4 MIBC, and 3 adjacent normal tissues.
Cell Death Discov
January 2025
Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
Besides the important pathogenic mechanisms of melanoma, including BRAF-driven and immunosuppressive microenvironment, genomic instability and abnormal DNA double-strand breaks (DSB) repair are significant driving forces for its occurrence and development. This suggests investigating novel therapeutic strategies from the synthetic lethality perspective. Poly (ADP-ribose) polymerase 4 (PARP4) is known to be a member of the PARP protein family.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University Shanghai, Caolang Highway 2901#, Jinshan District, Shanghai, People's Republic of China.
Background: Lung adenocarcinoma (LUAD) is a leading form of non-small cell lung cancer characterized by a complex tumor microenvironment (TME) that influences disease progression and therapeutic response. Tumor-associated macrophages (TAMs) within the TME promote tumorigenesis and evasion of immune surveillance, though their heterogeneity poses challenges in understanding their roles and therapeutic targeting. Additionally, traditional Chinese medicine (TCM) offers potential anti-cancer agents that could modulate the immune landscape.
View Article and Find Full Text PDFActa Biomater
January 2025
School of Materials and Energy, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin 644005, China. Electronic address:
Glioblastoma (GBM) is a primary central nervous system neoplasm, characterized by a grim prognosis and low survival rates. This unfavorable therapeutic outcome is partially attributed to the inadequate immune infiltration and an immunosuppressive microenvironment, which compromises the effectiveness of conventional radiotherapy and chemotherapy. To this end, precise modulation of cellular dynamics in the immune system has emerged as a promising approach for therapeutic intervention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!