Building a circular economy around poly(D/L-γ-glutamic acid)- a smart microbial biopolymer.

Biotechnol Adv

School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1 LY, UK. Electronic address:

Published: December 2022

Bio-derived materials have long been harnessed for their potential as backbones of biodegradable constructs. With increasing understanding of organismal biochemistry and molecular genetics, scientists are now able to obtain biomaterials with properties comparable to those achieved by the petroleum industry. Poly-γ-glutamic acid (γ-PGA) is an anionic pseudopolypeptide produced and secreted by several microorganisms, especially Bacillus species. γ-PGA is polymerised via the pgs intermembrane enzymatic complex expressed by many bacteria (including GRAS member - Bacillus subtilis). γ-PGA can exist as a homopolymer of L- glutamic acid or D- glutamic acid units or it can be a co-polymer comprised of D and L enantiomers. This non-toxic polymer is highly viscous, soluble, biodegradable and biocompatible. γ-PGA is also an example of versatile chiral-polymer, a characteristic that draws great attention from the industry. Increased understanding in the correlation between microbial genetics, substrate compositions, fermentation conditions and polymeric chemical characteristics have led to bioprocess optimisation to provide cost competitive, non-petroleum-based, biodegradable solutions. This review presents detailed insights into microbial synthesis of γ-PGA and summaries current understanding of the correlation between genetic makeup of γ-PGA-producing bacteria, range of culture cultivation conditions, and physicochemical properties of this incredibly versatile biopolymer. Additionally, we hope that review provides an updated overview of findings relevant to sustainable and cost-effective biosynthesis of γ-PGA, with application in medicine, pharmacy, cosmetics, food, agriculture and for bioremediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2022.108049DOI Listing

Publication Analysis

Top Keywords

glutamic acid
8
understanding correlation
8
γ-pga
6
building circular
4
circular economy
4
economy polyd/l-γ-glutamic
4
polyd/l-γ-glutamic acid-
4
acid- smart
4
smart microbial
4
microbial biopolymer
4

Similar Publications

Metabolic profiles of meconium in preeclamptic and normotensive pregnancies.

Metabolomics

January 2025

Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.

Introduction: Preeclampsia (PE) is a common vascular pregnancy disorder affecting maternal and fetal metabolism with severe immediate and long-term consequences in mothers and infants. During pregnancy, metabolites in the maternal circulation pass through the placenta to the fetus. Meconium, a first stool of the neonate, offers a view to maternal and fetoplacental unit metabolism and could add to knowledge on the effects of PE on the fetus and newborn.

View Article and Find Full Text PDF

Glutamate molecular structure and protein affect the inhibition of breast cancer cell metastasis: Cell-derived exosomes inhibitory effects through the MAPK signaling pathway.

Int J Biol Macromol

January 2025

Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, and Key Laboratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi Province, PR China; Department of Oncology-Pathology, Karolinska Institutet, Stockholm SE-17176, Sweden. Electronic address:

The aim of this study was to investigate the inhibitory effect of glutamate molecular structure and protein on breast cancer cell metastasis and the potential inhibitory mechanism of cell-derived exosomes via MAPK signaling pathway. Breast cancer cell lines with high metastatic potential were selected by in vitro cell culture technique. The effects of specific inhibitors of glutamic acid on the proliferation and metastasis of breast cancer cells were studied.

View Article and Find Full Text PDF

Background: The metabolism of plasma amino acid (AA) in children with autism spectrum disorder (ASD) has been extensively investigated, yielding inconclusive results. This study aims to characterize the metabolic alterations in AA profiles among early-diagnosed children with ASD and compare the findings with those from non-ASD children.

Methods: We analyzed plasma AA profiles, measured by ion exchange chromatography, from 1242 ASD children (median age = 4 years; 81% male).

View Article and Find Full Text PDF

The radiotracer [F]JK-PSMA-7, a prostate cancer imaging agent for positron emission tomography (PET), was previously synthesized by indirect radiofluorination using an F-labeled active ester as a prosthetic group, which had to be isolated and purified before it could be linked to the pharmacologically active Lys-urea-Glu motif. Although this procedure could be automated on two-reactor modules like the GE TRACERLab FX2N (FXN) to afford the tracer in modest radiochemical yields (RCY) of 18-25%, it is unsuitable for cassette-based systems with a single reactor. To simplify implementation on an automated synthesis module, the radiosynthesis of [F]JK-PSMA-7 was devised as a one-pot, two-step reaction.

View Article and Find Full Text PDF

Thermal condition affects the development and growth of ectotherms. The stenothermic honeybee brood, particularly the prepupae, are sensitive to low rearing temperature. The fat body plays important roles in energy reserve and metabolism during the honeybee brood development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!