Proton pump inhibitor-induced risk of chronic kidney disease is associated with increase of indoxyl sulfate synthesis via inhibition of CYP2E1 protein degradation.

Chem Biol Interact

Institute of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China. Electronic address:

Published: December 2022

Proton pump inhibitors (PPIs) are widely used to treat acid-related disorders in the gastrointestinal tract; however, PPI use increases the risk of chronic kidney disease (CKD) through unclear mechanisms. Considering that PPIs disturb the gut microbiome balance, which is involved in the precursor of gut-derived uremic toxin accumulation, and that gut-derived uremic toxins aggravate CKD progression, the aim of this study is to elucidate whether PPIs affect gut-derived uremic toxin metabolism, including indoxyl sulfate (IS), p-cresyl sulfate, and trimethylamine-N-oxide, as a mechanism for causing CKD. The present study showed that 3 week-treatment of PPIs (omeprazole, lansoprazole, and pantoprazole at 30 mg/kg) in mice only increased IS plasma levels among the above three gut-derived uremic toxins. Additionally, lansoprazole increased IS plasma concentrations along with increased exposure dose (7.5-30 mg/kg) and duration (1-3 weeks). However, nephrotoxicity with mild changes in glomerular structure and signs of fibrosis were observed only in groups exposed to a 3-week treatment of PPIs (30 mg/kg). As the concentrations of indole (the precursor of IS from gut metabolism) in the colon were only increased in the pantoprazole-treated group, the mechanism of increased IS exposure remains unclear. Further studies revealed that PPIs (omeprazole and lansoprazole; but not pantoprazole) increased IS production from indole in primary mouse hepatocytes in a concentration-dependent manner. Additionally, the increased protein levels of hepatic CYP2E1 (the key enzyme mediating IS formation) due to suppressed degradation resulted in an increase in IS levels. Although omeprazole and lansoprazole significantly inhibited IS uptake in hOAT1/3 in vitro, 3 weeks of PPI treatment did not reduce IS renal excretion in mice. In conclusion, PPIs induced IS synthesis via increased hepatic CYP2E1 protein level, subsequently leading to increased IS exposure. These findings present a plausible biological mechanism to explain the association of PPI use with the increased risk of CKD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2022.110219DOI Listing

Publication Analysis

Top Keywords

gut-derived uremic
16
omeprazole lansoprazole
12
increased exposure
12
increased
10
proton pump
8
risk chronic
8
chronic kidney
8
kidney disease
8
indoxyl sulfate
8
cyp2e1 protein
8

Similar Publications

The Gut-Kidney Axis in Chronic Kidney Diseases.

Diagnostics (Basel)

December 2024

Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.

The gut-kidney axis represents the complex interactions between the gut microbiota and kidney, which significantly impact the progression of chronic kidney disease (CKD) and overall patient health. In CKD patients, imbalances in the gut microbiota promote the production of uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, which impair renal function and contribute to systemic inflammation. Mechanisms like endotoxemia, immune activation and oxidative stress worsen renal damage by activating pro-inflammatory and oxidative pathways.

View Article and Find Full Text PDF
Article Synopsis
  • Uremic patients accumulate protein-bound uremic toxins (PBUTs), which alter drug metabolism by affecting the environment around liver cells and CYP450 enzymes.
  • The study found that specific PBUTs like indoxyl sulfate (IS) and hippurate (HA) significantly inhibit the metabolism of atorvastatin (ATV), with IS being the most impactful, reducing ATV metabolism by over 50%.
  • Results showed that the expression of the enzyme CYP3A4, critical for drug metabolism, was downregulated in the presence of uremic serum, leading to decreased ATV uptake and excretion due to effects on related signaling pathways.
View Article and Find Full Text PDF

Chronic Kidney Disease (CKD) is one of the most common conditions affecting felines, yet the metabolic alterations underlying its pathophysiology remain poorly understood, hindering progress in identifying biomarkers and therapeutic targets. This study aimed to provide a comprehensive view of metabolic changes in feline CKD across conserved biochemical pathways and evaluate their progression throughout the disease continuum. Using a multi-biomatrix high-throughput metabolomics approach, serum and urine samples from CKD-affected cats ( = 94) and healthy controls ( = 84) were analyzed with ultra-high-performance liquid chromatography-high-resolution mass spectrometry.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is a highly prevalent condition with complications such as constipation, inflammation, and dietary restrictions. Gut microbiota is an ecosystem of trillions of bacteria and other microorganisms such as viruses, fungi, and other eukaryotes. This review aimed to analyze the correlation between CKD and the microbiota.

View Article and Find Full Text PDF

Background: Although gut-derived uremic toxins are increased in azotemic chronic kidney disease (CKD) in cats and implicated in disease progression, it remains unclear if augmented formation or retention of these toxins is associated with the development of renal azotemia.

Objectives: Assess the association between gut-derived toxins (ie, indoxyl-sulfate, p-cresyl-sulfate, and trimethylamine-N-oxide [TMAO]) and the onset of azotemic CKD in cats.

Animals: Forty-eight client-owned cats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!