Green synthesized Ag decorated CeO nanoparticles: Efficient photocatalysts and potential antibacterial agents.

Chemosphere

Departmento de Quimica Organicia, Universitidad de Cordoba, Edificio Marie Curie (C-3) Ctra Nnal IV-A, km 396, E14104, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation. Electronic address:

Published: January 2023

Implication of natural resources for manufacturing of nanoparticles is sustainable, economical and contaminant free approach towards ecological and medical applications. Herein, CeO and Ag/CeO nanoparticles are green synthesized from Morinda tinctoria plant extract. The phase structure, surface morphology, optical identity, Ce(III) and Ce(IV) valency of the synthesized CeO and Ag/CeO nanoparticles are explored. The X-ray diffraction analysis indicated the formation of cubic phase CeO and cubic silver decorated CeO nanoparticles. Fourier transform infrared (FTIR) spectroscopy revealed the metal decoration of CeO nanoparticles, metal-oxygen stretching, indicating the plant molecules reduction and stabilization. UV-visible spectroscopy shown the decreased band gap owing to silver modification. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs displayed spherical morphology of the nanoparticles. Elemental composition and sample purity is assessed by energy dispersive spectroscopy (EDS). Double oxidation of Ce, double splitting energy of Ag and lattice oxygen are observed from X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of Ag/CeO exposed the enhanced photocatalytic activity up to 94% where CeO nanoparticles gave 60% degradation of bromophenol blue (BB). The plasmonic decoration of silver on the ceria surface induced the charge separations and free radical reactions. Moreover, Ag/CeO nanoparticles are seen as superior antibacterial agents than CeO towards both E.coli and S.aureus. Hence, the silver decorated metal oxide photocatalyst successfully degraded the BB dye and inactivated the bacterial strains. This report established a future research in green synthesis of multipurpose metal nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.136841DOI Listing

Publication Analysis

Top Keywords

ceo nanoparticles
16
ag/ceo nanoparticles
12
nanoparticles
10
green synthesized
8
ceo
8
decorated ceo
8
antibacterial agents
8
ceo ag/ceo
8
silver decorated
8
electron microscopy
8

Similar Publications

Hyaluronan-modified nanoceria for dry eye disease treatment.

J Colloid Interface Sci

December 2024

Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, China. Electronic address:

Dry eye disease (DED), a prevalent ocular disorder, affects nearly half the global population, bringing enormous health and economic burden. Currently, the predominant treatments for DED involve the administration of artificial tears, which is often hindered by continuous administration and constant reactive oxygen species (ROS) stimulus. Therefore, hyaluronan (HA)-modified cerium oxide (CeO) nanoparticles, HA-CeO, were developed to achieve simultaneous ROS scavenging and enhanced tear film stability.

View Article and Find Full Text PDF

Considering the increase in demand for rare earth elements (REEs) and their accumulation in soil ecosystems, it is crucial to understand their toxicity. However, the impact of lanthanum, yttrium and cerium oxides (LaO, YO and CeO, respectively) on soil organisms remains insufficiently studied. This study aims to unravel the effects of LaO, YO and CeO nanoparticles (NPs) and their corresponding bulk forms (0, 156, 313, 625, 1250 and 2500 mg/kg) on the terrestrial species Enchytraeus crypticus.

View Article and Find Full Text PDF

Reprogramming tumor-associated macrophages with lipid nanosystems reduces PDAC tumor burden and liver metastasis.

J Nanobiotechnology

December 2024

Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain.

Background: Pancreatic ductal adenocarcinoma (PDAC) requires innovative therapeutic strategies to counteract its progression and metastatic potential. Since the majority of patients are diagnosed with advanced metastatic disease, treatment strategies targeting not only the primary tumor but also metastatic lesions are needed. Tumor-Associated Macrophages (TAMs) have emerged as central players, significantly influencing PDAC progression and metastasis.

View Article and Find Full Text PDF

Alloy nanocatalysts exhibit enhanced activity, selectivity, and stability mainly due to their versatile phases and atomic structures. However, nanocatalysts' "real" functional structures may vary from their as-synthesized status due to the structural and chemical changes during the activation and reaction conditions. Herein, we studied the activated CuPd/CeO nanocatalysts under the CO oxidation reaction featuring an atomic-scale phase separation process, resulting in a notable "hysteresis" in catalyst performance.

View Article and Find Full Text PDF

Cerium oxide NPs (-CeO), with notable performance in various biological tests like redox activity, free radical scavenging, and biofilm inhibition, emerge as significant candidates to address issues in related areas. In this research, copper-decorated -CeO (Cu@-CeO) were first synthesized and then characterized using advanced techniques such as SEM-EDX, XRD, XPS, BET, and ICP-OES. The biochemical properties of the obtained Cu@-CeO nanostructure and its performance in polyethersulfone (PES) membranes were thoroughly investigated in this research study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!