Microplastics (MPs) and textile cellulose are globally pervasive pollutants in freshwater. In-situ studies assessing the ingestion of MPs by freshwater meiofauna are few. Here, we evaluated MP and textile cellulose ingestion by some meiofaunal taxa and functional guilds of a first-order stream in the city of Florence (Italy) by using a tandem microscopy approach (fluorescence microscopy and μFTIR). The study targeted five taxa (nematodes, oligochaetes, copepods, ephemeropterans and chironomids), three feeding (scrapers, deposit-feeders, and predators), and three locomotion (crawlers, burrowers, and swimmers) guilds. Fluorescent particles related to both MPs and textile cellulose resulted in high numbers in all taxa and functional guilds. We found the highest number of particles in nematodes (5200 particles/ind.) and deposit-feeders (1693 particles/ind.). Oligochaetes and chironomids (burrowers) ingested the largest particles (medium length: 28 and 48 μm, respectively), whereas deposit-feeders ingested larger particles (medium length: 26 μm) than scrapers and predators. Pellets were abundant in all taxa, except for Chironomidae. Textile cellulose fibers were present in all taxa and functional guilds, while MP polymers (EVA, PET, PA, PE, PE-PP) differed among taxa and functional guilds. In detail: EVA and PET particles were found only in chironomids, PE particles occurred in chironomids, copepods and ephemeropterans, PA particles were found in all taxa except in nematodes, whereas particles made of PE-PP blend occurred in oligochaetes and copepods. Burrowers and deposit-feeders ingested EVA, PET, PA, PE and PE-PP, while crawlers and scrapers ingested PE and PA. Swimmers and predators ingested PE, PA and PE-PP. Our findings suggest a pervasive level of plastic and textile cellulose pollution consistent with an urban stream which propagates in the meiofaunal assemblage of the stream ecosystem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.136830 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Plastic and Cosmetic Surgery, Treatment Center of Burn and Trauma, Affiliated Hospital of Jiangnan University, Wuxi 214122, China. Electronic address:
The conversion of mechanical energy into electrical energy by triboelectric nanogenerators (TENG) has attracted attention in recent years, particularly in the field of wearable sensor. In this work, TEMPO-oxidized cellulose nanofibers (TOCNF) with carboxylate groups were compounded with MXene to serve as both the negative friction layer and the electrode in assembling a TENG with nylon. The synergistic effect between TOCNF and MXene was analyzed to disclose its influence on the performance of the as-prepared TENG.
View Article and Find Full Text PDFGels
November 2024
School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
Due to the frequent occurrence of food safety problems in recent years, healthy diets are gradually receiving worldwide attention. Chemical pigments are used in smart food packaging because of their bright colors and high visibility. However, due to shortcomings such as carcinogenicity, people are gradually looking for natural pigments to be applied in the field of smart food packaging.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:
Langmuir
December 2024
College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China.
The active site density, intrinsic activity, and supporting substrate of cobalt phosphide catalysts are vital to their performance in alkaline water electrolysis. In this work, a CoP/CoP loaded on cellulose nanofiber-derived carbon aerogels (CP/CCAs) bifunctional electrocatalyst with a three-dimensional network and heterostructure is illustrated through sequential facile hydrothermal, freeze-drying, and phosphorylation processes. The three-dimensional network of carbon aerogels derived from cellulose nanofibers reveals a specific surface area of 183.
View Article and Find Full Text PDFChem Sci
December 2024
Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University Xi'an 710072 China
The interface between the perovskite layer and the electron transport layer is an extremely important factor that cannot be ignored in achieving high-performance perovskite photovoltaic technology. However, the void defects of the interface pose a serious challenge for high performance perovskite solar cells (PSCs). To address this, we report a polydentate ligand reinforced chelating strategy to strengthen the stability of the buried interface by managing interfacial defects and stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!