This study evaluated the variations in fecal pH and particle size due to changes in dietary starch, and the potential of these variations as a tool to detect the risk of subacute ruminal acidosis (SARA) in dairy cows. Nine ruminally cannulated, non-lactating, non-pregnant Holstein cows were used in two 6-week experimental periods. In each period, cows were first fed a forage diet for 1 wk., then transitioned over 1 wk. to a 65% concentrate ration, which they consumed for 4 wk. continuously. Measurements were conducted when cows consumed 17.3, 21.9 and 28.8% dietary starch. Fecal pH and particle size were measured at 0, 4, 8 and 12 h relative to feeding in days 7, 11, 21, 28, 35, and 42 of each period. Ruminal pH was measured every 15 min. Data were analyzed with SAS, the statistical model included concentrate level, time of sampling and period as fixed effects and cow was considered as random effect. Data showed an interaction between dietary starch level and time relative to feeding on fecal pH, with a shift in its pattern due to diet change. Specifically, during low starch feeding (17.3%), fecal pH was highest before feeding and decreased thereafter, reaching lowest value 12 h post-feeding (P < 0.05). With the 21.9% starch diet, fecal pH did not change significantly after feeding. However, during high starch feeding (28.8%), fecal pH decreased, being lowest before feeding and increased (P < 0.05) during the day reaching highest values at 8 and 12 h post-feeding. Fecal pH was lower (P < 0.01) during the days of high starch feeding; though, it was maintained relatively stable through this timeframe. Increasing dietary starch decreased the proportion of small fecal particles (0.5 to 1.18 mm), but increased the proportion of large (>1.18 mm) and soluble particles (<0.5 mm). There were significant correlations among ruminal pH, fecal pH and fecal particle size of feces collected before feeding. For example, fecal pH was correlated with minimum and daily mean ruminal pH; the proportion of fecal particles 0.5 to 1.18 mm correlated with minimum and daily mean ruminal pH (P < 0.01). Log-linear dependency analyses indicated a strong effect of starch intake on fecal pH so that for every kg increase in starch intake, there was a reduction in fecal pH by 0.38 units. In addition, regression analysis showed that the proportion of fecal particles between 0.5 and 1.18 mm showed strong dependency on the ratio dietary physically effective fiber to starch (P < 0.01). Ruminal pH also correlated with fecal particle size of frozen/thawed samples, but with lower strength than fresh samples. Overall, evaluating variations of fecal pH and particle size holds potential as a non-invasive on-farm tool for assessing rumen pH and SARA risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.rvsc.2022.10.001 | DOI Listing |
Plant Foods Hum Nutr
January 2025
Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru.
This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.
View Article and Find Full Text PDFJ Anim Sci
January 2025
Department of Animal Science, South Dakota State University, Brookings, USA.
The study investigated the effect of dietary inclusion of high amylose cornstarch (HA-starch) on cecal microbiota composition and volatile fatty acid (VFA) concentrations in weanling pigs fed high levels of cold-pressed canola cake (CPCC). Weaned pigs (240 mixed sex; 7.1 ± 1.
View Article and Find Full Text PDFSci China Life Sci
January 2025
National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University; CSU-Sinocare Research Center for Nutrition and Metabolic Health, Xiangya School of Public Health, Central South University, Furong Laboratory, Changsha, 410011, China.
Despite considerable research underscoring the importance of carbohydrate intake in relation to the risk of type 2 diabetes (T2D), a comprehensive assessment of this relationship is currently lacking. We aimed to examine the associations of various types and food sources of dietary carbohydrate intake with the risk of T2D, to evaluate potential effect modification by other factors, including genetic susceptibility, and to explore the potential mediators for such associations. The present study included 161,872 participants of the UK Biobank who were free of prevalent cancer, cardiovascular disease, or diabetes, and had at least one validated 24-h dietary recall assessment.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
Rice (Oryza sativa) is a vital food crop and staple diet for most of the world's population. Poor dietary choices have had a significant role in the development of type-2 diabetes in the population that relies on rice and rice-starch-based foods. Hence, our study investigated the in vitro digestion and glycemic indices of certain indigenous rice cultivars and the factors influencing these indices.
View Article and Find Full Text PDFArch Anim Nutr
January 2025
Institute of Animal Science, University of Bonn, Bonn, Germany.
Protein supply to ruminants relies mainly on the flow of microbial crude protein (MCP) from the rumen, which is commonly assumed to primarily depend on energy supply. This study evaluated this assumption with recent data and tested if ruminally fermented organic matter (FOM) was a better predictor of MCP flow than total-tract digestible organic matter (DOM) and if more variables could improve the prediction of MCP flow. A previously published data set was extended by additional studies resulting in a data set of 139 studies including 407 treatment means, typical to Central European rations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!