A dynamically reconfigurable liquid crystal (LC) photonic device is an important research field in modern LC photonics. We present a type of continuously tunable distributed Bragg reflector (DBR) based on LC polymer composites modulated via a novel optofluidic method. LC-templated DBR films are fabricated by photopolymerization under visible standing wave interference. The influences of the incident angle, incident light intensity, and content of ethanol as a pore-forming additive on the reflection behavior are discussed in detail. Then, the LC-templated DBR films are integrated into microfluidic channels and reversibly refilled by different organic solvents. The reconfigurable characteristics of optofluidic DBRs were demonstrated by changing the average refractive index (RI) of the mixed liquids and adjusting the flow rates, resulting in the dynamic and continuous variation of the reflection band within a specific visible light band. It is anticipated that the prototype optofluidic LC device will hopefully be applied to some specific scenarios where conventional means of regulation, such as electric, optical, and temperature fields, are unsuitable and possibly boost the development of microfluidic analysis techniques based on structural color.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.470286 | DOI Listing |
Sci Adv
December 2024
Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.
A fundamental requirement for photonic technologies is the ability to control the confinement and propagation of light. Widely used platforms include two-dimensional (2D) optical microcavities in which electromagnetic waves are confined in either metallic or distributed Bragg reflectors. Recently, transition metal dichalcogenides hosting tightly bound excitons with high optical quality have emerged as promising atomically thin mirrors.
View Article and Find Full Text PDFSensors (Basel)
November 2024
School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China.
Monitoring of real-time flow and defects in the vacuum-assisted resin infusion (VARI) process can provide important guidelines for full impregnation of dry reinforcement. A weak fiber Bragg grating array was employed to obtain quasi-distributed monitoring results in real-time. Sensitivity testing of different kinds of coated optical fiber sensors (OFs) was carried out first, and the polyacrylate-coated OF showed a greater wavelength-shift response than the polyimide-coated one.
View Article and Find Full Text PDFNanophotonics
June 2024
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland.
Exploring the non-Hermitian properties of semiconductor materials for optical applications is at the forefront of photonic research. However, the selection of appropriate systems to implement such photonic devices remains a topic of debate. In this work, we demonstrate that a perovskite crystal, characterized by its easy and low-cost manufacturing, when placed between two distributed Bragg reflectors with an air gap, can form a natural double microcavity.
View Article and Find Full Text PDFMed Phys
December 2024
Faculty of Engineering, Hokkaido University, Sapporo, Japan.
Background: Protoacoustics has emerged as a promising real-time range measurement method for proton therapy. Optical hydrophones (OHs) are considered suitable to detect protoacoustic waves owing to their ultracompact size and high sensitivity. In our previous research, we demonstrated that the time-of-arrival (TOA) measured by an OH showed good agreement with the simulated ground truth in a homogeneous medium.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!