Acquired underwater images often suffer from severe quality degradation, such as color shift and detail loss due to suspended particles' light absorption and scattering. In this paper, we propose a Dual-path Joint Correction Network (DJC-NET) to cope with the above degenerate issues, preserving different unique properties of underwater images in a dual-branch way. The design of the light absorption correction branch is to improve the selective absorption of light in water and remove color distortion, while the light scattering correction branch aims to improve the blur caused by scattering. Concretely, in the light absorption correction path, we design the triplet color feature extraction module, which balances the triplet color distribution of the degraded image through independent feature learning between R, G, and B channels. In the light scattering correction path, we develop a dual dimensional attention mechanism to extract the texture information from the features, aiming to recover sufficient details by more effective feature extraction. Furthermore, our method utilizes the multi-scale U-net to adaptively fusion features from different paths to generate enhanced images. Extensive visual and objective experimental results demonstrate that our method outperforms state-of-the-art methods in various underwater scenes.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.468633DOI Listing

Publication Analysis

Top Keywords

light absorption
12
dual-path joint
8
joint correction
8
correction network
8
underwater images
8
absorption correction
8
correction branch
8
light scattering
8
scattering correction
8
correction path
8

Similar Publications

Proposed Optical Manipulation of Nanoparticles to Access and Select Emission Lines.

Nano Lett

January 2025

Department of Materials Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.

Optical manipulation of nanomaterials using light resonant with material excitations holds promise for enhancing optical forces and sorting particles by unique quantum properties. Conventional resonant optical sorting mainly relies on absorption and scattering forces, making it difficult to sort nanomaterials by specific emission lines. Furthermore, emission typically induces negligible force unless the material is highly anisotropic, limiting selective manipulation via emission characteristics.

View Article and Find Full Text PDF

The BeP monolayer exhibits ultra-high and highly anisotropic carrier mobility and 29.3% photovoltaic efficiency.

Nanoscale

January 2025

Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.

Two-dimensional materials with a combination of a moderate bandgap, highly anisotropic carrier mobility, and a planar structure are highly desirable for nanoelectronic devices. This study predicts a planar BeP monolayer with hexagonal symmetry that meets the aforementioned desirable criteria using the CALYPSO method and first-principles calculations. Calculations of electronic properties demonstrate that the hexagonal BeP monolayer is an intrinsic semiconductor with a direct band gap of approximately 0.

View Article and Find Full Text PDF

In the field of nanocluster catalysis, it is crucial to understand the interplay of different parameters, such as ligands, support and pretreatment and their effect on the catalytic process. In this study, we chose the selective hydrogenation of phenylacetylene as a model reaction and employed two gold nanoclusters as catalysts, the phosphine protected Au and the thiolate protected Au, each with different binding motifs. They were supported on MgO, AlO and a hydrotalcite (HT), chosen for their different acidity.

View Article and Find Full Text PDF

High-temperature reduction of TiO causes the gradual formation of structural defects, leading to oxygen vacancy planar defects and giving rise to Magnéli phases, which are substoichiometric titanium oxides that follow the formula Ti O, with 4 ≤ ≤ 9. A high concentration of defects provides several possible configurations for Ti and Ti within the crystal, with the variation in charge ordered states changing the electronic structure of the material. The changes in crystal and electronic structures of Magnéli phases introduce unique properties absent in TiO, facilitating their diverse applications.

View Article and Find Full Text PDF

Unveiling the Origin of Copper Accumulation in Plasma with Aging.

Environ Health (Wash)

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Aging is intricately linked to various diseases including cancers, neurodegenerative disorders, and metabolic irregularities. Copper (Cu) overexposure has been found to be linked to many diseases during aging, particularly neurodegenerative diseases. Meanwhile, as an essential element, Cu has been implicated in key processes associated with aging, raising questions about its role in age-related health issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!