While silicon photonics has leveraged the nanofabrication tools and techniques from the microelectronics industry, it has also inherited the metrological methods from the same. Photonics fabrication is inherently different from microelectronics in its intrinsic sensitivity to 3D shape and geometry, especially in a high-index contrast platform like silicon-on-insulator. In this work, we show that electrical resistance measurements can in principle be used to infer the geometry of such nanophotonic structures and reconstruct the micro-loading curves of foundry etch processes. We implement our ideas to infer 3D geometries from a standard silicon photonics foundry and discuss some of the potential sources of error that need to be calibrated out. By using electrical measurements, pre-designed structures can be rapidly tested at wafer-scale, without the added complexity of optical alignment and spectral measurement and analysis, providing both a route towards predictive optical device performance and a means to control the geometry variation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.460803DOI Listing

Publication Analysis

Top Keywords

electrical resistance
8
nanophotonic structures
8
silicon photonics
8
resistance asymmetries
4
asymmetries infer
4
infer geometric
4
geometric shapes
4
shapes foundry
4
foundry patterned
4
patterned nanophotonic
4

Similar Publications

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

Purpose: The aims of this study were to explore the differences in total body water and hydration status among Chinese children aged 6-17 years.

Methods: A cross-sectional study was implemented among children aged 6-17 years in China. The total body water (TBW), intracellular water (ICW), and extracellular water (ECW) were determined by bioelectrical impedance analysis (BIA).

View Article and Find Full Text PDF

Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance.

View Article and Find Full Text PDF

This study investigates the effects of electrical stimulation (EMS) combined with strength training on lower limb muscle activation and badminton jump performance, specifically during the "jump smash" movement. A total of 25 male badminton players, with a minimum of three years of professional training experience and no history of lower limb injuries, participated in the study. Participants underwent three distinct conditions: baseline testing, strength training, and EMS combined with strength training.

View Article and Find Full Text PDF

This study investigates the optimal design and operation of an underwater ultrasonic system for algae removal, focusing on the electromechanical load of Langevin-type piezoelectric transducers. These piezoelectric transducers, which operate in underwater environments, exhibit variations in electrical-mechanical impedance due to practical environmental factors, such as waterproof molding structures or variations in pressure and flow rates depending on the water depth. To address these challenges, we modeled the underwater load conditions using the finite element method and analyzed the impedance characteristics of the piezoelectric transducer under realistic environmental conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!