Bandwidth, orbital-angular momentum (OAM) divergence, and mode purity are the three critical issues for the practical terahertz orbital angular momentum manipulation, especially in the next sixth-generation (6G) communication system. Here we propose the broadband high-order Bessel vortex beam carrying multiple OAM modes reflective metasurface in the terahertz domain. The simulation results agree with the theoretical expectation, and the diffracting divergence of OAM vortex beam characteristics has been alleviated. The research on the relationship between the varieties of lattice type and mode purity is also relatively scarce. Henceforth, a comparison study has been conducted between three lattice types, i.e., square lattice, triangular lattice, and concentric ring lattice. And corresponding results of the relationship of mode purity with those lattice types show that the concentric ring lattice has the best performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.470894 | DOI Listing |
JASA Express Lett
December 2024
Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78766-9767, USA.
Analytical solutions for acoustic vortex beams radiated by sources with uniform circular amplitude distributions are derived in the paraxial approximation. Evaluation of the Fresnel diffraction integral in the far field of an unfocused source and in the focal plane of a focused source leads to solutions in terms of an infinite series of Bessel functions for orbital numbers ℓ>-2. These solutions are reduced to closed forms for 0≤ℓ≤4, which correspond to orbital numbers commonly used in experiments.
View Article and Find Full Text PDFACS Photonics
December 2024
Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.
Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.
View Article and Find Full Text PDFThe orbital angular momentum (OAM) of beams provides an additional degree of freedom and has been applied in various scientific and technological fields. Accurate and quantitative measurement of intensity distributions across different OAM modes, referred to as the OAM spectrum of a beam, is crucial. Here, we propose a straightforward and efficient experimental setup for measuring the OAM spectrum of a randomly fluctuating beam.
View Article and Find Full Text PDFThe spin-orbit ( - ) interaction in a focused-reflected beam of light results in spatially nonuniform polarization in the beam cross section due to the superposition of orthogonal field components and polarization-dependent interface reflection coefficients. Polarization filtering the output beam leads to an interchangeable transformation of =∓2 charge vortex into two (∓) unit charge vortices, for = ±1 circular polarization of the input Gaussian beam. This transformation follows a trajectory, named optical vortex trajectory, that depends on the input beam's and hence the and reflecting surface characteristics.
View Article and Find Full Text PDFWe demonstrate the generation of stable femtosecond vortices from a self-started Kerr-lens mode-locked Yb:YAG thin-disk oscillator. By using a defective mirror inscribed with a fine line, 218-fs Hermite-Gaussian (HG) pulses are delivered directly from the thin-disk oscillator with an average power of 12 W at the repetition rate of 105 MHz and subsequently converted to Laguerre-Gaussian (LG) vortices by a cylindrical-lens mode-converter. The average output power of the Hermite-Gaussian pulses is further improved to 19 W by applying a rectangular aperture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!