A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoscale-cavity enhancement of color conversion with colloidal quantum dots embedded in the surface nano-holes of a blue-emitting light-emitting diode. | LitMetric

Although the method of inserting colloidal quantum dots (QDs) into deep nano-holes fabricated on the top surface of a light-emitting diode (LED) has been widely used for producing effective Förster resonance energy transfer (FRET) from the LED quantum wells (QWs) into the QDs to enhance the color conversion efficiency, an important mechanism for enhancing energy transfer in such an LED structure was overlooked. This mechanism, namely, the nanoscale-cavity effect, represents a near-field Purcell effect and plays a crucially important role in enhancing the color conversion efficiency. Here, we demonstrate the results of LED performance, time-resolved photoluminescence (TRPL), and numerical simulation to elucidate the nanoscale-cavity effect on color conversion by inserting a photoresist solution of red-emitting QDs into the nano-holes fabricated on a blue-emitting QW LED. Based on the TRPL study of the inserted QDs in a nano-hole structure fabricated on an un-doped GaN template of no QW, it is found that the emission efficiency of the inserted QDs is significantly increased due to the nanoscale-cavity effect. From the simulation study, it is confirmed that this effect can also increase the FRET efficiency, particularly for those radiating dipoles in the QWs oriented perpendicular to the sidewalls of the nano-holes. In the nanoscale-cavity effect, the enhanced near field distribution inside a nano-hole excited by a light emitter modifies its own radiation behavior through the Purcell effect such that its far-field emission becomes stronger.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.463214DOI Listing

Publication Analysis

Top Keywords

color conversion
16
colloidal quantum
8
quantum dots
8
light-emitting diode
8
nano-holes fabricated
8
energy transfer
8
conversion efficiency
8
inserted qds
8
nanoscale-cavity
5
qds
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!