A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Weighted multi-scale denoising via adaptive multi-channel fusion for compressed ultrafast photography. | LitMetric

Being capable of passively capturing transient scenes occurring in picoseconds and even shorter time with an extremely large sequence depth in a snapshot, compressed ultrafast photography (CUP) has aroused tremendous attention in ultrafast optical imaging. However, the high compression ratio induced by large sequence depth brings the problem of low image quality in image reconstruction, preventing CUP from observing transient scenes with fine spatial information. To overcome these restrictions, we propose an efficient image reconstruction algorithm with multi-scale (MS) weighted denoising based on the plug-and-play (PnP) based alternating direction method of multipliers (ADMM) framework for multi-channel coupled CUP (MC-CUP), named the MCMS-PnP algorithm. By removing non-Gaussian distributed noise using weighted MS denoising during each iteration of the ADMM, and adaptively adjusting the weights via sufficiently exploiting the coupling information among different acquisition channels collected by MC-CUP, a synergistic combination of hardware and algorithm can be realized to significantly improve the quality of image reconstruction. Both simulation and experimental results demonstrate that the proposed adaptive MCMS-PnP algorithm can effectively improve the accuracy and quality of reconstructed images in MC-CUP, and extend the detectable range of CUP to transient scenes with fine structures.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.469345DOI Listing

Publication Analysis

Top Keywords

transient scenes
12
image reconstruction
12
compressed ultrafast
8
ultrafast photography
8
large sequence
8
sequence depth
8
quality image
8
scenes fine
8
weighted denoising
8
mcms-pnp algorithm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!