Density-based topology optimization is used to design large-scale, multi-layer grating couplers that comply with commercial foundry fabrication constraints while simultaneously providing beam profiles that efficiently couple to a single-mode optical fiber without additional optics. Specifically, we describe the design process and experimentally demonstrate both single- and dual-polarization grating couplers that couple at normal incidence (0° from the normal) with low backreflections (-13.7 dB and -15.4 dB at the center wavelength), broad 3 dB bandwidths (75 nm and 89 nm), and standard coupling efficiencies (-4.7 dB and -7.0 dB). The dual-polarization grating couplers exhibit over 30 dB of polarization extinction across the entire band. The devices were fabricated on the GlobalFoundries 45CLO CMOS platform and characterized across three separate wafers. This new design approach produces distinct features for multiple foundry layers and yields emitters with arbitrary, user-specified far-field profiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.466015 | DOI Listing |
We present both experimental and simulation results for a fully etched, C-band GC fabricated in an 800 nm silicon nitride platform that significantly reduces backreflections. They are minimized by truncating the initial grates, which deflect reflected light at an oblique angle and excite higher-order modes in the tapered waveguide that is filtered out. Insertion losses resulting from this modification of the grating coupler are mitigated by an adaptive redesign of the grates that corrects incurred errors in the generated phase front.
View Article and Find Full Text PDFNanoscale Adv
January 2025
School of Electrical Engineering and Computer Science, University of Ottawa Ottawa Ontario K1N 6N5 Canada
Interference of surface plasmons has been widely utilized in optical metrology for applications such as high-precision sensing. In this paper, we introduce a surface plasmon interferometer with the potential to be arranged in arrays for parallel multiplexing applications. The interferometer features two grating couplers that excite surface plasmon polariton (SPP) waves traveling along a gold-air interface before converging at a gold nanoslit where they interfere.
View Article and Find Full Text PDFGrating-assisted, contra-directional couplers (GA-CDCs), owing to their four-port operations, can offer several important advantages over traditional, single waveguide-based Bragg gratings. However, how to flexibly design the spectral responses of GA-CDCs has been much less studied. We report the spectral tailoring methodology of GA-CDCs to achieve arbitrary, physically realizable, complex spectral responses.
View Article and Find Full Text PDFPolymer photonics is receiving significant attention due to its potential for a wide range of integrated photonic applications and wide wavelength transparency. Wafer-scale testing is challenging due to low-index contrast in polymer waveguides. In this Letter, we demonstrate an amorphous silicon based out-of-plane polymer waveguide grating coupler.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!