A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microcirculatory alterations in critically ill COVID-19 patients analyzed using artificial intelligence. | LitMetric

AI Article Synopsis

  • The study aims to identify microcirculatory changes in critically ill COVID-19 patients using deep learning combined with algorithmic methods for better performance in differentiation from healthy individuals.! -
  • Researchers used data from four international cohorts, analyzing over 6,000 image sequences to train, validate, and verify the effectiveness of their models.! -
  • Results showed that a combined model using deep learning and algorithmic quantification achieved the best performance in identifying COVID-19 status, highlighting the potential of advanced technology in medical diagnostics.!

Article Abstract

Background: The sublingual microcirculation presumably exhibits disease-specific changes in function and morphology. Algorithm-based quantification of functional microcirculatory hemodynamic variables in handheld vital microscopy (HVM) has recently allowed identification of hemodynamic alterations in the microcirculation associated with COVID-19. In the present study we hypothesized that supervised deep machine learning could be used to identify previously unknown microcirculatory alterations, and combination with algorithmically quantified functional variables increases the model's performance to differentiate critically ill COVID-19 patients from healthy volunteers.

Methods: Four international, multi-central cohorts of critically ill COVID-19 patients and healthy volunteers (n = 59/n = 40) were used for neuronal network training and internal validation, alongside quantification of functional microcirculatory hemodynamic variables. Independent verification of the models was performed in a second cohort (n = 25/n = 33).

Results: Six thousand ninety-two image sequences in 157 individuals were included. Bootstrapped internal validation yielded AUROC(CI) for detection of COVID-19 status of 0.75 (0.69-0.79), 0.74 (0.69-0.79) and 0.84 (0.80-0.89) for the algorithm-based, deep learning-based and combined models. Individual model performance in external validation was 0.73 (0.71-0.76) and 0.61 (0.58-0.63). Combined neuronal network and algorithm-based identification yielded the highest externally validated AUROC of 0.75 (0.73-0.78) (P < 0.0001 versus internal validation and individual models).

Conclusions: We successfully trained a deep learning-based model to differentiate critically ill COVID-19 patients from heathy volunteers in sublingual HVM image sequences. Internally validated, deep learning was superior to the algorithmic approach. However, combining the deep learning method with an algorithm-based approach to quantify the functional state of the microcirculation markedly increased the sensitivity and specificity as compared to either approach alone, and enabled successful external validation of the identification of the presence of microcirculatory alterations associated with COVID-19 status.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568900PMC
http://dx.doi.org/10.1186/s13054-022-04190-yDOI Listing

Publication Analysis

Top Keywords

critically ill
12
ill covid-19
12
covid-19 patients
12
microcirculatory alterations
8
quantification functional
8
functional microcirculatory
8
microcirculatory hemodynamic
8
hemodynamic variables
8
patients healthy
8
neuronal network
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!