Detecting object boundaries is crucial for recognition, but how the process unfolds in visual cortex remains unknown. To study the problem faced by a hypothetical boundary cell, and to predict how cortical circuitry could produce a boundary cell from a population of conventional "simple cells," we labeled 30,000 natural image patches and used Bayes' rule to help determine how a simple cell should influence a nearby boundary cell depending on its relative offset in receptive field position and orientation. We identified the following three basic types of cell-cell interactions: rising and falling interactions with a range of slopes and saturation rates, and nonmonotonic (bump-shaped) interactions with varying modes and amplitudes. Using simple models, we show that a ubiquitous cortical circuit motif consisting of direct excitation and indirect inhibition-a compound effect we call "incitation"-can produce the entire spectrum of simple cell-boundary cell interactions found in our dataset. Moreover, we show that the synaptic weights that parameterize an incitation circuit can be learned by a single-layer "delta" rule. We conclude that incitatory interconnections are a generally useful computing mechanism that the cortex may exploit to help solve difficult natural classification problems. Simple cells in primary visual cortex (V1) respond to oriented edges and have long been supposed to detect object boundaries, yet the prevailing model of a simple cell-a divisively normalized linear filter-is a surprisingly poor natural boundary detector. To understand why, we analyzed image statistics on and off object boundaries, allowing us to characterize the neural-style computations needed to perform well at this difficult natural classification task. We show that a simple circuit motif known to exist in V1 is capable of extracting high-quality boundary probability signals from local populations of simple cells. Our findings suggest a new, more general way of conceptualizing cell-cell interconnections in the cortex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732833PMC
http://dx.doi.org/10.1523/JNEUROSCI.2581-18.2022DOI Listing

Publication Analysis

Top Keywords

object boundaries
12
boundary cell
12
cell-cell interactions
8
visual cortex
8
circuit motif
8
difficult natural
8
natural classification
8
simple cells
8
simple
7
natural
5

Similar Publications

(1) Background: At present, the bio-inspired visual neural models have made significant achievements in detecting the motion direction of the translating object. Variable contrast in the figure-ground and environmental noise interference, however, have a strong influence on the existing model. The responses of the lobula plate tangential cell (LPTC) neurons of Drosophila are robust and stable in the face of variable contrast in the figure-ground and environmental noise interference, which provides an excellent paradigm for addressing these challenges.

View Article and Find Full Text PDF

The flow network model is an established approach to approximate pressure-flow relationships in a bifurcating network, and has been widely used in many contexts. Existing models typically assume unidirectional flow and exploit Poiseuille's law, and thus neglect the impact of bifurcation geometry and finite-sized objects on the flow. We determine the impact of bifurcation geometry and objects by computing Stokes flows in a two-dimensional (2D) bifurcation using the Lightning-AAA Rational Stokes algorithm, a novel mesh-free algorithm for solving 2D Stokes flow problems utilizing an applied complex analysis approach based on rational approximation of the Goursat functions.

View Article and Find Full Text PDF

Antimicrobial stewardship (AMS) is a commonly advocated approach to address antimicrobial resistance. However, AMS is often defined in different ways depending on where it is applied, such that a range of definitions is now in use. These definitions may be functional and well-structured for a given context but are often ill-adapted for collaborative work, creating difficulties for intersectoral communication on AMS and complicating the design, implementation, and evaluation of AMS interventions from a One Health perspective.

View Article and Find Full Text PDF

Thermal Analysis of Electromagnetic Induction Heating for Cylinder-Shaped Objects.

Electrophoresis

January 2025

School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA.

Induction heating is one of the cleanest and most efficient methods for heating materials, utilizing electromagnetic fields induced through AC electric current. This article reports an analytical solution for transient heat transfer in a three-dimensional (3D) cylindrical object under induction heating. A simplified form of Maxwell's equations is solved to determine the heat generation inside the cylinder by calculating the current density distribution within the body.

View Article and Find Full Text PDF

Selective attention is widely thought to be sensitive to visual objects. This is commonly demonstrated in cueing studies, which show that when attention is deployed to a known target location that happens to fall on a visual object, responses to targets that unexpectedly appear at other locations on that object are faster and more accurate, as if the object in its entirety has been visually prioritized. However, this notion has recently been challenged by results suggesting that putative object-based effects may reflect the influence of hemifield anisotropies in attentional deployment, or of unacknowledged influences of perceptual complexity and visual clutter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!