The present study reports the synthesis and characterization of 12 drug delivery systems (DDS) for the co-delivery of antifungal and antiviral agents. The systems were obtained by an in situ hydrogelation method of 6 chitosan oligomers with values of the polymerization degree between 14 and 51, with 2-formylphenylboronic acid, in the presence of tenofovir. The structural characterization by NMR and FTIR spectroscopy demonstrated the formation of imine linkages, while WXRD revealed the 3D layered architecture of the systems. SEM and POM images demonstrated the uniform distribution of tenofovir into the matrix, while the Zeta potential measurements revealed the strong interactions which develop between system components. The obtained DDSs presented biodegradability, hemocompatibility and in vivo biocompatibility, which along with their ability to release both the drug and the antifungal aldehyde make them promising materials for the treatment of HIV infection and its associated co-infections' symptoms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2022.120071DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
delivery systems
8
antifungal antiviral
8
antiviral agents
8
biocompatible drug
4
systems
4
systems co-deliver
4
co-deliver antifungal
4
agents study
4
study reports
4

Similar Publications

NAC-Grafted ROS-Scavenging Polymer Nanoparticles for Modulation of Acute Lung Injury Microenvironment In Vivo.

Biomacromolecules

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.

-Acetyl cysteine (NAC) is an essential molecule that boosts acute lung injury (ALI) defense via its direct antioxidant capability. Nevertheless, the therapeutic use of NAC is limited due to its poor bioavailability and short half-life. In this study, NAC was grafted to the polyurethane consisting of poly(propylene fumarate), poly(thioketal), and 1,6-hexamethylene diisocyanate (PFTU) to reduce excessive oxidative stress and inflammatory factors in ALI.

View Article and Find Full Text PDF

Bactericidal Metal-Organic Gallium Frameworks - Synthesis to Application.

Mol Pharm

December 2024

Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Gallium, a trace metal not found in its elemental form in nature, has garnered significant interest as a biocide, given its ability to interfere with iron metabolism in bacteria. Consequently, several gallium compounds have been developed and studied for their antimicrobial properties but face challenges of poor solubility and formulation for delivery. Organizing the metal into three-dimensional, hybrid scaffolds, termed metal-organic frameworks (MOFs), is an emerging platform with potential to address many of these limitations.

View Article and Find Full Text PDF

Self-propelled micro/nanomotors (MNMs) represent a groundbreaking advancement in precision drug delivery, offering potential solutions to persistent challenges such as systemic toxicity, limited bioavailability, and nonspecific distribution. By transforming various energy sources into mechanical motion, MNMs are able to autonomously navigate through complex physiological environments, facilitating targeted delivery of therapeutic agents to previously inaccessible regions. However, to achieve efficient in vivo drug delivery, biomedical MNMs must demonstrate their ability to overcome crucial physiological barriers encompassing mucosal surfaces, blood flow dynamics, vascular endothelium, and cellular membrane.

View Article and Find Full Text PDF

Cervical cancer remains a significant health challenge in developing countries are high due to low HPV vaccination rates, delayed diagnosis, and restricted healthcare access. Metal nanomaterials, such as copper oxide (CuO) nanoparticles (NPs), have shown significant promise in cancer therapy due to their ability to induce apoptosis. 5-Fluorouracil (5-Fu) enhances the cytotoxic effect against cervical cancer, working synergistically with CuO NPs to maximize the therapeutic impact while potentially reducing the 5-Fu's systemic side effects.

View Article and Find Full Text PDF

Rationale and Logistics of Continuous Infusion Cephalosporin Antibiotics.

Pharmacy (Basel)

December 2024

Department of Pharmacy, Prisma Health Richland, 5 Medical Park Drive, Columbia, SC 29203, USA.

Cephalosporins have traditionally been administered as an intermittent infusion. With the knowledge that cephalosporins demonstrate a time-dependent pharmacodynamic profile, administration via continuous infusion may provide more effective antibiotic exposure for successful therapy. Proposed benefits of administration via continuous infusion include less IV manipulation, decreased potential for antibiotic resistance, and potential cost savings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!