In the past, electromagnetic interference (EMI) shielding materials have achieved great breakthroughs, however, they still suffer from high reflectivity and poor environmental stability, resulting in detrimental secondary pollution and weak adaptability. Herein, an organohydrogel-based EMI shielding material was prepared through cellulose nanofibril-based Pickering emulsion, composed of an MXene network for electron conduction, encapsulated paraffin wax microspheres with MXene-FeO shells for multiple scattering of the incident wave, and MXene-CNF-FeO-polyacrylamide hybrid interfaces for dielectric polarization. The EMI shielding performance of our organohydrogel shows an absorption-dominated feature. It can effectively shield 99.625 % electromagnetic wave, satisfying the requirement of commercial EMI shielding materials. Moreover, the organohydrogel possesses excellent flame retardancy properties and long-time environment properties to improve safety and reliability; and it also demonstrates sensitive deformation responses as an on-skin sensor. Therefore, our organohydrogel can simultaneously detect human motion and protect human from EMI radiation and accidental burn.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2022.120132 | DOI Listing |
Nanomicro Lett
December 2024
School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
As modern communication and detection technologies advance at a swift pace, multifunctional electromagnetic interference (EMI) shielding materials with active/positive infrared stealth, hydrophobicity, and electric-thermal conversion ability have received extensive attention. Meeting the aforesaid requirements simultaneously remains a huge challenge. In this research, the melamine foam (MF)/polypyrrole (PPy) nanowire arrays (MF@PPy) were fabricated via one-step electrochemical polymerization.
View Article and Find Full Text PDFSmall
December 2024
School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
Hydrogels present significant potential in flexible materials designed for electromagnetic interference (EMI) shielding, attributed to their soft, stretchable mechanical properties and water-rich porous structures. Unfortunately, EMI shielding hydrogels commonly suffer from low mechanical properties, deficient fracture energy, and low strength, which limit the serviceability of these materials in complex mechanical environments. In this study, the double network strategy is successfully utilized along with the Hofmeister effect to create MXene/PAA (polyacrylic acid)-CS (chitosan) hydrogels and further strengthen and toughen the gel with (NH)SO solution.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:
The design of multifunctional, high-performance wearable heaters utilizing textile substrates has garnered increasing attention, particularly in the development of body temperature and health monitoring devices. However, fabricating these multifunctional wearable heaters while simultaneously ensuring flexibility, air permeability, Joule heating performance, electromagnetic interference (EMI) shielding and antibacterial properties remains a significant challenge. This study utilizes phase transition lysozyme (PTL) film-mediated electroless deposition (ELD) technology to deposit silver nanoparticles (Ag NPs) on the cotton fabrics surface in a mild aqueous solution at room temperature, thereby constructing a wearable heater with long-term stability, high conductivity, and exceptional photothermal properties.
View Article and Find Full Text PDFSmall
December 2024
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China.
With the rapid development of mobile communication technology and wearable electronic devices, the electromagnetic radiation generated by high-frequency information exchange inevitably threatens human health, so high-performance wearable electromagnetic interference (EMI) shielding materials are urgently needed. The 2D nanomaterial MXene exhibits superior EMI shielding performance owing to its high conductivity, however, its mechanical properties are limited due to the high porosity between MXene nanosheets. In recent years, it has been reported that by introducing natural nanocellulose as an organic framework, the EMI shielding and mechanical properties of MXene/nanocellulose composites can be synergically improved, which are expected to be widely used in wearable multifunctional shielding devices.
View Article and Find Full Text PDFAdv Mater
December 2024
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China.
Optical-electromagnetic compatible devices are urgently required in intelligent building monitors and cross-band protection. Meanwhile, the insufficient systematicness and semi-empirical attempts significantly limit the prosperity of cross-band materials, causing enormous challenges for deviceization and material database construction. Herein, the systematical component-deviceization-machine learning prediction-array construction strategy is attempted to solve the bottleneck issues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!